	जब तक आपको यह परीक्षण पुस्तिका खोलने को न कहा जाए तब तक न खोलें					
	बी. सी. : FDGT-T-EMT संख्या 1095957 परीक्षण पुस्तिका प्रारम्भिक गणित					
सम	य : दो घण्टे पूर्णीक : 10					
	अनुदेश					
1.	जनुपरा परीक्षा प्रारम्भ होने के तुरन्त बाद, आप इस परीक्षण पुस्तिका की पड़ताल अवश्य कर लें कि इसमें कोई बिना छपा फटा या छूटा हुआ पृष्ठ अथवा प्रश्नांश, आदि न हो । यदि ऐसा है, तो इसे सही परीक्षण पुस्तिका से बदल लीजिए					
2.	कृपया ध्यान रखें कि OMR उत्तर-पत्रक में, उचित स्थान पर, रोल नम्बर और परीक्षण पुस्तिका अनुक्रम A, B, C या p को, ध्यान से एवं बिना किसी चूक या विसंगति के भरने और कूटबद्ध करने की ज़िम्मेदारी उम्मीदवार की है। किसी भी प्रकार की चूक/विसंगति की स्थिति में उत्तर-पत्रक निरस्त कर दिया जाएगा।					
3.	इस परीक्षण पुस्तिका पर साथ में दिए गए कोष्ठक में आपको अपना अनुक्रमांक लिखना है । परीक्षण पुस्तिका पर <i>और कुछ न</i> लिखें ।					
4.	इस परीक्षण पुस्तिका में 100 प्रश्नांश (प्रश्न) दिए गए हैं । प्रत्येक प्रश्नांश <i>हिन्दी</i> और अंग्रेज़ी दोनों में छपा है । प्रत्येव प्रश्नांश में चार प्रत्युत्तर (उत्तर) दिए गए हैं । इनमें से एक प्रत्युत्तर को चुन लें, जिसे आप उत्तर-पत्रक पर अंकित करन चाहते हैं । यदि आपको ऐसा लगे कि एक से अधिक प्रत्युत्तर सही हैं, तो उस प्रत्युत्तर को अंकित करें जो आपको सर्वोत्त लगे । प्रत्येक प्रश्नांश के लिए केवल एक ही प्रत्युत्तर चुनना है ।					
5.	आपको अपने सभी प्रत्युत्तर अलग से दिए गए उत्तर-पत्रक पर ही अंकित करने हैं । उत्तर-पत्रक में दिए गए निर्देश देखिए ।					
6.	सभी प्रश्नांशों के अंक समान हैं।					
7.	इससे पहले कि आप परीक्षण पुस्तिका के विभिन्न प्रश्नांशों के प्रत्युत्तर उत्तर-पत्रक पर अंकित करना शुरू करें, आपको प्रवेश प्रमाण-पत्र के साथ प्रेषित अनुदेशों के अनुसार कुछ विवरण उत्तर-पत्रक में देने हैं ।					
8.	ं आप अपने सभी प्रत्युत्तरों को उत्तर-पत्रक में भरने के बाद तथा परीक्षा के समापन पर <i>केवल उत्तर-पत्रक</i> अधीक्षक क सौंप दें । आपको अपने साथ परीक्षण पुस्तिका ले जाने की अनुमति है ।					
9.	कच्चे काम के लिए पत्रक परीक्षण पुस्तिका के अंत में संलग्न हैं।					
10.	ग़लत उत्तरों के लिए दण्ड : वस्तुनिष्ठ प्रश्न-पत्रों में उम्मीदवार द्वारा दिए गए ग़लत उत्तरों के लिए दण्ड दिया जाएगा ।					
	 (i) प्रत्येक प्रश्न के लिए चार वैकल्पिक उत्तर हैं । उम्मीदवार द्वारा प्रत्येक प्रश्न के लिए दिए गए एक ग़लत उत्तर के लिए प्रश्न हेतु नियत किए गए अंकों का एक-तिहाई दण्ड के रूप में काटा जाएगा । 					
	 (ii) यदि कोई उम्मीदवार एक से अधिक उत्तर देता है, तो इसे ग़लत उत्तर माना जाएगा, यद्यपि दिए गए उत्तरों में से एक उत्त सही होता है, फिर भी उस प्रश्न के लिए उपर्युक्तानुसार ही उसी तरह का दण्ड दिया जाएगा । 					
	 (iii) यदि उम्मीदवार द्वारा कोई प्रश्न हल नहीं किया जाता है, अर्थात् उम्मीदवार द्वारा उत्तर नहीं दिया जाता है, तो उस प्रश्न वे लिए कोई दण्ड नहीं दिया जाएगा । 					
1. 1. 1.						

FDGT-T-EMT

1,	यदि	4.	यदि $\frac{\sqrt{x+20} + \sqrt{x-1}}{\sqrt{x+20} - \sqrt{x-1}} = \frac{7}{3}$ है, तो
	$x^2 - 20 = \sqrt{20 + \sqrt{20 + \sqrt{20 + \sqrt{20 + \dots 3777}}}}$		$\sqrt{(x+20)(x-1)}$ का मान क्या है ?
	हैं, तो x किसके बराबर है ?		(a) 8
	(a) 4	121	(b) 9
	(b) 5		(c) 10 (d) 12
	(c) $\sqrt{5}$		(u) 12
	(d) $2\sqrt{5}$	5.	$(x^8 - y^8)$ और $(x^7 - y^7 + x^5y^2 - x^2y^5)$ का HCF क्या
• • • •	a start of the start of the tart of	and	है ?
			(a) $(x^2 + y^2)$
2.	यदि $\frac{a+b}{b+c} = \frac{c+d}{d+a}$ जहाँ $a \neq c$ है, तो निम्नलिखित		(b) $(x^2 - y^2)$
	bre ura		(c) $(x^3 - y^3 - x^2y + xy^2)$
	में से कौन-सा सही है ?		(d) $(x^3 - y^3 + x^2y - xy^2)$
	(a) $a+b=c+d$		The Brangert a The State
	(b) $a+c=b+d$	6.	यदि समीकरण $x^2 - 14x + k = 0$ के मूलों के वर्गों का
	and the second		योगफल 100 है, तो k का मान क्या है ?
	(c) $a-b-c+d=0$	1.1	(a) 42
	(d) $a + b + c + d = 0$	1.5	(b) 48
			(c) 52
			(d) 56
3.	यदि $(a^3 + b^3)$, $(a^2 - b^2)$ के समानुपाती है, तो		
	$(a^2 - ab + b^2)$ किसके समानुपाती है ?	7.	यदि x^2 + px + q और x^2 + qx + p का HCF
	(a) (a-b)	43	(x + k) है, जहाँ p ≠ q है, तो k का मान क्या है ?
	the second second the last been as		(a) -1
	(b) $(a + b)$		(b) 0
	(c) $(a + ab + b)$	A car	
	(d) $(a^3 - b^3)$	N. W.	(c) $\frac{1}{2}$
	(u) (a - b)	and the second sec	
	(u) (u - v)		(d) 1

1. If $x^2 - 20 = \sqrt{20 + \sqrt{20 + \sqrt{20 + \sqrt{20 + \dots}}}}$ infinite terms, then what is x equal to ?

- (a) 4
- (b) 5
- (c) $\sqrt{5}$
- (d) $2\sqrt{5}$
- 2. If $\frac{a+b}{b+c} = \frac{c+d}{d+a}$ where $a \neq c$, then which one of the following is correct ?
 - (a) a+b=c+d
 - (b) a + c = b + d
 - (c) a b c + d = 0
 - (d) a + b + c + d = 0

3. If $(a^3 + b^3)$ is proportional to $(a^2 - b^2)$, then ($a^2 - ab + b^2$) is proportional to ($a^2 - b^2$), then 7.

(a) (a - b)

(b) (a + b)

(c) (a + ab + b)

(d) $(a^3 - b^3)$

If $\frac{\sqrt{x+20} + \sqrt{x-1}}{\sqrt{x+20} - \sqrt{x-1}} = \frac{7}{3}$, then what is the value of $\sqrt{(x+20)(x-1)}$? (a) 8

(b) 9

4.

- (c) 10
- (d) 12

5. What is the HCF of $(x^8 - y^8)$ and $(x^7 - y^7 + x^5y^2 - x^2y^5)$?

- (a) $(x^2 + y^2)$
- (b) $(x^2 y^2)$
- (c) $(x^3 y^3 x^2y + xy^2)$
- (d) $(x^3 y^3 + x^2y xy^2)$
- 6. If the sum of the squares of the roots of the equation $x^2 14x + k = 0$ is 100, then what is the value of k?
 - (a) 42
 - (b) 48
 - (c) 52
 - (d) 56

If (x + k) is the HCF of $x^2 + px + q$ and $x^2 + qx + p$, where $p \neq q$, then what is the value of k?

- (a) -1
- (b) 0
- (c) $\frac{1}{2}$
 - (d) 1

FDGT-T-EMT

(3 - A)

8. यदि दो संख्याओं में से बड़ी संख्या के तिगुने को छोटी
संख्या से विभाजित किया जाए, तो भागफल 6 होगा
और शेषफल 6 होगा । यदि छोटी संख्या के पाँच गुना
को बड़ी संख्या से विभाजित किया जाए, तो भागफल 2
होगा और शेषफल 3 होगा । दोनों संख्याओं के बीच का
अंतर क्या है ?

 (a) 8
 (b) 9

 (c) 10
 (d) 12

 (d) 12
 2.
$$x^4(y-z) + y^4(z-x) + z^4(x-y)$$
 घनात्सर
है यदि $x < y < z$ है ।

 9. निम्नलिखित कथनों पर विचार कीजिए :
1. $a^2(b-c)^3 + b^2(c-a)^3 + c^2(a-b)^3$ का
गुणनखंड ($ab + bc + ca$) है ।
 3पर्युक्त कथनों में से कौन-सा/कौन-से सही है/हैं ?

 (a) केवल 1
 3पर्युक्त कथनों में से कौन-सा/कौन-से सही है/हैं ?

 (a) केवल 1
 (b) केवल 2

 (c) 1 और 2 दोनों
 (d) न तो 1, न ही 2

 10. $\frac{1}{x(x-y)(x-z)} + \frac{1}{y(y-z)(y-x)} + \frac{1}{z(z-x)(z-y)}$
 12. $\frac{x^6 - 24x^4 + 144x^2}{(x^2 + 4\sqrt{3}x + 12)(x - 2\sqrt{3})^2}$ किसके बराबर है ?

 10. $\frac{1}{x(x-y)(x-z)} + \frac{1}{y(y-z)(y-x)} + \frac{1}{z(z-x)(z-y)}$
 12. $\frac{x^6 - 24x^4 + 144x^2}{(x^2 + 4\sqrt{3}x + 12)(x - 2\sqrt{3})^2}$ किसके बराबर है ?

किसके बराबर है ?
 (b)
$$x^2 - 2$$

 (a) 0
 (c) $\frac{1}{xyz}$

 (d) $-\frac{1}{xyz}$
 (d) $x^2 - 2\sqrt{3}$

(4 - A)

, न ही 2

- 2 दोनों
- 2 .
- $(z z) + y^4 (z x) + z^4 (x y)$ धनात्मक है >y>z है ।

 $(z - z) + y^4 (z - x) + z^4 (x - y)$ त्रणात्मक

x < y < z है ।

में से कौन-सा/कौन-से सही है/हैं ?

यदि दो संख्याओं में से बड़ी संख्या के तिगुने को छोटी 11. निम्नलिखित कथनों पर विचार कीजिए :

8. If three times the greater of two numbers is 11. divided by the smaller number, the quotient will be 6 and the remainder will be 6. If five times the smaller number is divided by the greater number, the quotient will be 2 and the remainder will be 3. What is the difference between the numbers?

- (a) 8
- 9 (b)
- (c) 10
- (d) 12
- 9. Consider the following statements :
 - (ab + bc + ca)1. is a factor of $a^{2}(b-c)^{3} + b^{2}(c-a)^{3} + c^{2}(a-b)^{3}$.
 - (a+b+c) is 2. a factor of $a^{2}(b-c)^{3} + b^{2}(c-a)^{3} + c^{2}(a-b)^{3}$.

Which of the statements given above is/are correct?

- (a) Only 1
- (b) Only 2
- (c) Both 1 and 2
- (d) Neither 1 nor 2

10. What is

$$\frac{1}{x (x - y)(x - z)} + \frac{1}{y (y - z)(y - x)} + \frac{1}{z (z - x)(z - y)}$$
equal to ?
(a) 0
(b) 1
(c) $\frac{1}{xyz}$
(d) $-\frac{1}{xyz}$

FDGT-T-EMT

Consider the following statements :

- 1. $x^4(y-z) + y^4(z-x) + z^4(x-y)$ is positive if x > y > z.
- $x^{4}(y-z) + y^{4}(z-x) + z^{4}(x-y)$ is 2. negative if x < y < z.

Which of the above statements is/are correct ?

- Only 1 (a)
- (b) Only 2
- Both 1 and 2 (c)
- (d) Neither 1 nor 2

12. What is
$$\frac{x^{0}-24x^{4}+144x^{2}}{(x^{2}+4\sqrt{3}x+12)(x-2\sqrt{3})^{2}}$$
 equal to?
(a) x^{2}
(b) $x^{2}-2$
(c) $x^{2}+2\sqrt{3}$
(d) $x^{2}-2\sqrt{3}$

(5 - A)

13. X और Y किसी कार्य को क्रमशः 45 दिनों और 40 दिनों में पूरा कर सकते हैं । वे एक साथ कार्य शुरू करते हैं, लेकिन X, n दिनों के बाद कार्य छोड़ देता है और Y शेष कार्य को 23 दिनों में पूरा करता है । n किसके बराबर है ?

- (a) 8
- (b) 9
- (c) . 10
- (d) 12

दो स्टेशन X और Y, 1320 km की दूरी पर हैं। एक रेलगाड़ी स्टेशन X से 6 a.m. पर चलना शुरू करती है और 60 km/hr की औसत चाल से चलती है। 2 p.m. पर दूसरी रेलगाड़ी Y से X की ओर चलना शुरू करती है और 80 km/hr की औसत चाल से चलती है। वे कब मिलेंगी?

(a) 6 p.m.

- (b) 7 p.m.
- (c) 8 p.m.

9 p.m.

(d)

कार्य को 10 दिनों में पूरा करते हैं । 8 घंटे प्रतिदिन काम करने पर, शेष बचे हुए कार्य को 20 दिनों में पूरा करने के लिए कितने अतिरिक्त व्यक्तियों को नियोजित करने की आवश्यकता है ?

10 घंटे प्रतिदिन काम करने पर 480 व्यक्ति एक-चौथाई

- (a) 400
- (b) 420
- (c) 480
- (d) 500

15. 12 महिला और 16 पुरुष किसी कार्य को 5 दिन में पूरा कर सकते हैं । 13 महिला और 24 पुरुष इसी कार्य को 4 दिन में पूरा कर सकते हैं । 25 महिलाओं और 50 पुरुषों को इस कार्य को पूरा करने में कितना समय लगेगा ?

- (a) 1 दिन
- (b) 2 दिन
- (c) 3 दिन
- (d) 4 दिन

17. समान आयतन वाले दो गिलास ऐल्कोहॉल और पानी के मिश्रण से क्रमश: 3 : 2 और 4 : 1 के अनुपात में भरें जाते हैं । इन गिलासों को एक तीसरे गिलास में खाली किया जाता है । तीसरे गिलास में ऐल्कोहॉल और पानी का अनुपात क्या होगा ?

- (a) 5:4
- (b) 7:2
- (c) 7:3
- (d) 7:4

(6 - A)

14.

- 13. X and Y can do a piece of work in 45 days and 40 days respectively. They begin to work together, but X leaves after n days and then Y completes the remaining work in 23 days. What is n equal to ?
 - (a) 8
 - (b) 9
 - (c) 10
 - (d) 12
- 14. 480 persons working 10 hours per day complete one-fourth of a work in 10 days. How many additional persons are to be employed in order to complete the remaining work in 20 days, working 8 hours per day ?
 - (a) 400
 - (b) 420
 - (c) 480
 - (d) 500

15. 12 women and 16 men can do a piece of work in 5 days. 13 women and 24 men can do it in 4 days. How long will 25 women and 50 men take to do it ?

- (a) 1 day
- (b) 2 days
- (c) 3 days
- (d) 4 days

There are two stations X and Y, 1320 km apart. A train starts from station X at 6 a.m. and moves at an average speed of 60 km/hr. At 2 p.m. another train starts from Y towards X and moves at an average speed of 80 km/hr. When do they meet ?

(a) 6 p.m.

(b) 7 p.m.

- (c) 8 p.m.
- (d) 9 p.m.
- 17. Two glasses of equal volume are filled with a mixture of alcohol and water in the ratio 3 : 2 and 4 : 1, respectively. These glasses are emptied into a third glass. What is the ratio of alcohol and water in the third glass ?

(a) 5:4
(b) 7:2
(c) 7:3
(d) 7:4

(7 - A)

18.	यदि $\frac{3}{5}, \frac{6}{25}, \frac{9}{20}, \frac{27}{50}$ का HCF, x है और LCM, y	21.	संख्या	N = $12^6 imes 3^8 imes 5^3$ पर विचार कीजिए ।
· · · · · · · · · · · · · · · · · · ·	है, तो निम्नलिखित में से कौन-सा सही है ?		निम्नलि	लेखित कथनों में से कौन-सा/कौन-से सही है/हैं ?
			1.	N के विषम गुणनखंडों की संख्या 60 है।
	(a) $y = 90x$		2.	N के सम गुणनखंडों की संख्या 720 है ।
	(b) y = 180x			देए गए कूट का प्रयोग कर सही उत्तर चुनिए :
	(c) $y = 270x$.			केवल 1
	(d) $y = 360x$			केवल 2
				1 और 2 दोनों
i sen i j	and the state of the state of			न तो 1, न ही 2
19.	x और y दो धनपूर्ण संख्याएँ हैं, जहाँ x > y है । जब		(u)	1 (11 1, 1 6) 2
	x को 6 से विभाजित किया जाता है, तो शेषफल 2 आता	1.		
	है और; जब y को 6 से विभाजित किया जाता है, तो	00	जन्मि]	$\frac{\log_{10} a}{b-c} = \frac{\log_{10} b}{c-a} = \frac{\log_{10} c}{a-b}, (a \neq b \neq c) \stackrel{\texttt{d}}{\neq},$
	(14)(15) order (x - y) + 0 order 14	22.	વાલ -	$\overline{b-c} = \overline{c-a} = \overline{a-b}$, $(a \neq b \neq c)$ &
	किया जाए तो शेषफल क्या होगा ?		तो ab	c का मान क्या है ?
	(a) 1		(a)	-1
	(b) 3		(b)	0
	(c) 5 [°]		(c)	1
	(d) शेषफल निर्धारित नहीं किया जा सकता		(d)	3
				······································
20.	2-अंकों वाली एक संख्या का मान, अंकों के योगफल	23.	यदि ए	क घड़ी 4 घंटे 40 मिनट दिखाती है तो घंटे की सूई
	का 5 गुना है । अंकों का गुणनफल क्या है ?		और f	मेनट की सूई के बीच का कोण क्या है ?
	(a) 15		(a)	80°
	(b) 18	<u>,</u> ^	(b)	100°
	(c) 20		(c)	120°
	(d) 27		(d)	220°
FDG	т-т-емт (8-	A)		

- 18. If x is the HCF and y is the LCM of $\frac{3}{5}, \frac{6}{25}, \frac{9}{20}, \frac{27}{50}$, then which one of the following is correct?
 - (a) y = 90x
 - (b) y = 180x
 - (c) y = 270x
 - (d) y = 360x
- 19. There are two natural numbers x and y, where x > y. When x is divided by 6, it leaves the remainder 2 and; when y is divided by 6, it leaves the remainder 3. What is the remainder when (x y) is divided by 6?
 - (a) 1
 - (b) 3
 - (c) 5
 - (d) Remainder cannot be determined
- 20. The value of a 2-digit number is 5 times the sum of the digits. What is the product of the digits ?
 - (a) 15
 - (b) 18
 - (c) 20
 - (d) 27

FDGT-T-EMT

- Consider the number $N = 12^6 \times 3^8 \times 5^3$. Which of the following statements is/are correct ?
- 1. The number of odd factors of N is 60.
- 2. The number of even factors of N is 720.

Select the correct answer using the code given below :

- (a) Only 1
- (b) Only 2
- (c) Both 1 and 2
- (d) Neither 1 nor 2
- 22. If $\frac{\log_{10} a}{b-c} = \frac{\log_{10} b}{c-a} = \frac{\log_{10} c}{a-b}$, $(a \neq b \neq c)$, then what is the value of abc? (a) -1
 - (b) 0

1

(d) 3

(c)

- 23. What is the angle between the hour hand and the minute hand of a clock when the clock shows 4 hours 40 minutes ?
 - (a) 80°
 - (b) 100°
 - (c) 120°
 - (d) 220°

(9 - A)

24.	यदि $\log_{10}\left[995 + \sqrt{x^2 - 12x + 60}\right] = 3$ है, तो इस समीकरण के मूलों का योगफल क्या है ? (a) 12	27.	नीचे दिए गए प्रश्न और दो कथनों पर विचार कीजिए : 2-अंकों की एक संख्या को इस संख्या के अंकों को अदल-बदल (उलट) कर बनाई गई संख्या में जोड़ा जाता है।				
	(b) 11		प्रश्न : 2-अंकों की संख्या कौन-सी है ?				
	(c) . 10		कथन-1: योगफल 9 से भाज्य है।				
		<i>कथन-2</i> : योगफल 2 से भाज्य है। प्रश्न और कथनों के संदर्भ में निम्नलिखित में से					
	(d) 9						
25.	x के निम्नलिखित मानों में से कितने मान समीकरण		कौन-सा सही है ?				
	$qx^2 - 2px + q = 0$ को संतुष्ट करेंगे ? 1 $x = \sqrt{p+q} + \sqrt{p-q}$ जहाँ कर क		 (a) प्रश्न का उत्तर देने के लिए केवल कथन-1 पर्याप्त है 				
	1. $x = \frac{\sqrt{p+q} + \sqrt{p-q}}{\sqrt{p+q} - \sqrt{p-q}}, $ जहाँ $p > q$		(b) प्रश्न का उत्तर देने के लिए केवल कथन-2 पर्याप्त है				
	2. $x = \frac{p + \sqrt{p^2 - q^2}}{q}$, जहाँ $p > q$		(c) प्रश्न का उत्तर देने के लिए कथन-1 और कथन-2, दोनों पर्याप्त हैं				
	3. $x = \frac{\sqrt{p+q}}{\sqrt{p-q}}$, जहाँ $p > q$		 (d) प्रश्न का उत्तर देने के लिए कथन-1 और कथन-2, दोनों पर्याप्त नहीं हैं 				
	नीचे दिए गए कूट का प्रयोग कर सही उत्तर चुनिए :	•	the state of the state of the				
	(a) केवल एक मान	28.	नीचे दिए गए प्रश्न और दो कथनों पर विचार कीजिए :				
	(b) केवल दो मान		दो संख्याओं x और y का LCM 481 है, जहाँ x > y.				
	(c) सभी तीनों मान		प्रश्न : (3x – 2y) का मान क्या है ?				
	(d) कोई भी नहीं		कथन-1: y>1.				
26.	मान लीजिए $p(x) = x^4 + x^2 + 1$,		कथन-2: x और y का HCF 1 है।				
	$q(x) = x^4 - 2x^3 + 3x^2 - 2x + 1$ है यदि $p(x)$ और		प्रश्न और कथनों के संदर्भ में निम्नलिखित में से				
	$q(x)$ का GCD, $x^2 - x + 1$ है, तो इनका LCM क्या है ?	•	कौन-सा सही है ? (a) प्रश्न का उत्तर देने के लिए केवल कथन-1 पर्याप्त				
			है 1				
	(a) $(x^2 + x + 1)(x^2 - x + 1)^2$		(b) प्रश्न का उत्तर देने के लिए केवल कथन-2 पर्याप्त है				
Dig.	(b) $(x^4 + x^2 + 1)^2 (x^2 - x + 1)$ (c) $(x^4 + x^2 + 1)(x^2 + x + 1)^2$		 (c) प्रश्न का उत्तर देने के लिए कथन-1 और कथन-2, दोनों पर्याप्त हैं 				
	(d) $(x^4 + x^2 + 1)(x^2 - x + 1)^2$		(d) प्रश्न का उत्तर देने के लिए कथन-1 और कथन-2, दोनों पर्याप्त नहीं हैं				
FDG	Г-Т-ЕМТ (10 –	- A)					

24. If log₁₀ [995 + √x² - 12x + 60] = 3, then what is the sum of the roots of the equation ?
(a) 12
(b) 11

- (c) 10
- (d) 9

25. How many of the following values of x would satisfy the equation $qx^2 - 2px + q = 0$?

1.
$$x = \frac{\sqrt{p+q} + \sqrt{p-q}}{\sqrt{p+q} - \sqrt{p-q}}$$
, where $p > q$

2.
$$x = \frac{p + \sqrt{p^2 - q^2}}{q}$$
, where $p > q$

3.
$$x = \frac{\sqrt{p+q}}{\sqrt{p-q}}$$
, where $p > q$

Select the correct answer using the code given below :

- (a) Only one value
- (b) Only two values
- (c) All three values
- (d) None

26. Let $p(x) = x^4 + x^2 + 1$,

 $q(x) = x^4 - 2x^3 + 3x^2 - 2x + 1$. If GCD of p(x)and q(x) is $x^2 - x + 1$, then what is their LCM?

- (a) $(x^2 + x + 1)(x^2 x + 1)^2$
- (b) $(x^4 + x^2 + 1)^2 (x^2 x + 1)$
- (c) $(x^4 + x^2 + 1)(x^2 + x + 1)^2$
- (d) $(x^4 + x^2 + 1)(x^2 x + 1)^2$

FDGT-T-EMT

Consider the question and two statements given below :

A 2-digit number is added to the number formed by reversing the digits of the 2-digit number.

Question : What is the 2-digit number ?

Statement-1: The sum is divisible by 9.

Statement-2: The sum is divisible by 2.

Which one of the following is correct in respect of the question and the statements ?

- (a) Statement-1 alone is sufficient to answer the question
- (b) Statement-2 alone is sufficient to answer the question
- (c) Both Statement-1 and Statement-2 are sufficient to answer the question
- (d) Both Statement-1 and Statement-2 are not sufficient to answer the question
- **28.** Consider the question and two statements given below :

LCM of two numbers x and y is 481 where x > y.

Question : What is the value of (3x - 2y)?

Statement-1: y > 1.

Statement-2: HCF of x and y is 1.

Which one of the following is correct in respect of the question and the statements ?

- (a) Statement-1 alone is sufficient to answer the question
- (b) Statement-2 alone is sufficient to answer the question
- (c) Both Statement-1 and Statement-2 are sufficient to answer the question
- (d) Both Statement-1 and Statement-2 are not sufficient to answer the question

$$(11 - A)$$

29.		। विग गण गणा और से स्थानों गए जिन्छ निम्ल	i ···		
49.		। दिए गए प्रश्न और दो कथनों पर विचार कीजिए :	31.	यदि	$a = 3b, 4b = 5c, 6c = 7d \hat{e}, \hat{d} \frac{d+a}{d-a}$
		तः कया (x ⁿ + y ⁿ), (x + y) से भाज्य है ?	his .	किस	के बराबर है ?
	कश्च	कथन-1: n एक धनपूर्ण संख्या है।			97
	कथ	<i>पन-2</i> : n एक सम धनपूर्ण संख्या है।	14	(a)	$\frac{27}{43}$
		। और कथनों के संदर्भ में निम्नलिखित में से 1-सा सही है ?		(b)	$\frac{43}{27}$
	(a)	प्रश्न का उत्तर देने के लिए केवल कथन-1 पर्याप्त है		(c)	$-\frac{27}{43}$
	(b)	प्रश्न का उत्तर देने के लिए केवल कथन-2 पर्याप्त है		(d)	$-\frac{43}{27}$
	 (c) प्रश्न का उत्तर देने के लिए कथन-1 और कथन-2, दोनों पर्याप्त हैं 				the the mean of the second sec
	(þ)	प्रश्न का उत्तर देने के लिए कथन-1 और कथन-2, दोनों पर्याप्त नहीं हैं	32.	k वे	ह वे कौन-से मान हैं, जिनके लिए बहुपद
				(k –	$3) x^2 - kx - 1$ का कोई वास्तविक रैखिक
				गुणनर	बंड <i>नहीं</i> है ?
30.	नीचे	दिए गए प्रश्न और दो कथनों पर विचार कीजिए :			a maintenant i sur la se
	मान लीजिए x और y दो वास्तविक संख्याएँ हैं।			(a)	k < - 6
	प्रश्न	: क्या xy > 0 है ?		(b)	- 6 < k < 2
	कथन-1: $x^8y^9 < 0.$			(c)	2 < k < 6
	कथन-2: $x^9y^{10} < 0.$			(d)	k > 6
	प्रश्न और कथनों के संदर्भ में निम्नलिखित में से कौन-सा सही है ?				and the sales proved the
	(a)	प्रश्न का उत्तर देने के लिए केवल कथन-1 पर्याप्त है	33.		bc + cd = 2bd और a + c = 2b है, तो
	(b)	प्रश्न का उत्तर देने के लिए केवल कथन-2 पर्याप्त		निम्नति	लेखित में से कौन-सा सही है ?
		35		(a)	ab - cd = 0
	(c)	प्रश्न का उत्तर देने के लिए कथन-1 और कथन-2, दोनों पर्याप्त हैं	and a second	(b)	ac - bd = 0
	(d)	प्रश्न का उत्तर देने के लिए कथन-1 और कथन-2, दोनों पर्याप्त नहीं हैं		(c)	ad - bc = 0
				(d)	ad + bc = 0
FDG	I-T-E	MT (12 -	-A)		

29.	 Consider the question and two statements given below : Question : Is (xⁿ + yⁿ) divisible by (x + y) ? Statement-1 : n is a natural number. Statement-2 : n is an even natural number. Which one of the following is correct in respect of the question and the statements ? (a) Statement-1 alone is sufficient to answer the question (b) Statement-2 alone is sufficient to answer the question 		If a = 3b, 4b = 5c, 6c = 7d, then what is $\frac{d+a}{d-a}$ equal to ? (a) $\frac{27}{43}$ (b) $\frac{43}{27}$ (c) $-\frac{27}{43}$ (d) $-\frac{43}{27}$
	 (c) Both Statement-1 and Statement-2 are sufficient to answer the question (d) Both Statement-1 and Statement-2 are not sufficient to answer the question 	32.	What are the values of k for which the polynomial $(k - 3) x^2 - kx - 1$ has no real linear factors?
30.	Consider the question and two statements given below :		(a) $k < -6$ (b) $-6 < k < 2$
	Let x and y be two real numbers.		(c) $2 < k < 6$
	Question :Is $xy > 0$?Statement-1 : $x^8y^9 < 0$.Statement-2 : $x^9y^{10} < 0$.	1	(d) k > 6
	Which one of the following is correct in respect of the question and the statements ?	33.	If $bc + cd = 2bd$ and $a + c = 2b$, then which
	(a) Statement-1 alone is sufficient to answer the question		one of the following is correct ?
(************************************	(b) Statement-2 alone is sufficient to		(a) $ab - cd = 0$
	answer the question		(b) $ac - bd = 0$
	(c) Both Statement-1 and Statement-2 are sufficient to answer the question		(c) $ad - bc = 0$
	(d) Both Statement-1 and Statement-2 are not sufficient to answer the question		(d) $ad + bc = 0$
FDGT	-T-EMT (13	-A)	the second second

मौसम के कारण कम ह औसत गति 100 km/h	i, किसी विमान की गति खराब i) गई । यात्रा के दौरान इसकी ur कम हो गई और उड़ान का ा । विमान की मूल औसत गति 38.	p है और इसी संख्या के वर्ग और इसके व्युत्क्रम के वर्ग के बीच का अंतर q है, तो $p^4 + 4p^2$ किसके बराबर है ? (a) 4q (b) 8q (c) 4q^2 (d) q ² यदि $x = 2 + 2^{1/2}$ है, तो $x^4 + 16x^{-4}$ का मान क्या
$(x + y + z)^3 - 24xyz$ दि (a) $a^3 + b^3 + c^3$ (b) $2(a^3 + b^3 + c^3)$ (c) $8(a^3 + b^3 + c^3)$ (d) उपर्युक्त में से कोई 36. एक व्यक्ति X स्थान A	39.	है ? (a) 152 (b) 144 (c) 136 (d) 132 30 km चलने में X, Y की तुलना में 3 घंटे अधिक लेता है । यदि X अपनी चाल को दुगुना कर देता है, तो वह Y से 2 घंटे कम लेता है । Y की चाल क्या है ? (a) 3 km/hr
शुरू करता है, जो A से (एक ही दिशा में चलते है चाल से चलता है और Y चलता है Y से आगे नि चुका होगा ? (a) $\frac{ud}{(u-v)}$ (b) $\frac{vd}{(u-v)}$ (c) $\frac{(ud - vd)}{(u-v)}$ (d) $\frac{(ud + vd)}{(u + v)}$	d km की दूरी पर है । वे दोनों 4 X, u km/hr की औसत 4, v km/hr की औसत चाल से 1कलने से पहले X कितना चल 40.	 (b) 4 km/hr (c) 4²/₇ km/hr (d) 4³/₇ km/hr (d) 4³/₇ km/hr ¹ यदि ₹ 10,000 पर 4% की वार्षिक दर से त्रैमासिक आधार पर संयोजित एक वर्ष का चक्रवृद्धि ब्याज C है, तो निम्नलिखित में से कौन-सा सही है ? (a) C < ₹ 100 (b) ₹ 100 < C < ₹ 200 (c) ₹ 200 < C < ₹ 400 (d) C > ₹ 400
FDGT-T-EMT	(14 – A)	

- 34. In a flight of 2800 km, an aircraft was slowed down due to bad weather. Its average speed for the trip was reduced by 100 km/hr and time of flight increased by 30 minutes. What was the original average speed of the aircraft ?
 - (a) 700 km/hr
 - (b) 750 km/hr
 - (c) 800 km/hr
 - (d) 900 km/hr
- **35.** If x = b + c, y = c + a, z = a + b, then what is $(x + y + z)^3 24xyz$ equal to ?
 - (a) $a^3 + b^3 + c^3$
 - (b) $2(a^3 + b^3 + c^3)$
 - (c) $8(a^3 + b^3 + c^3)$
 - (d) None of the above
- 36. A person X starts from a place A and another person Y starts simultaneously from another place B which is d km away from A. They walk in the same direction. X walks at an average speed of u km/hr and Y walks at an average speed of v km/hr. How far will X have walked before he overtakes Y?
 - (a) $\frac{\mathrm{ud}}{(\mathrm{u}-\mathrm{v})}$
 - (b) $\frac{\mathrm{vd}}{(\mathrm{u}-\mathrm{v})}$
 - (c) $\frac{(ud vd)}{(u v)}$
 - (d) $\frac{(ud + vd)}{(u + v)}$

FDGT-T-EMT

- If p is the difference between a number and its reciprocal and q is the difference between the square of the same number and the square of its reciprocal, then what is $p^4 + 4p^2$ equal to?
 - (a) 4q
 - (b) 8q
 - (c) $4q^2$
 - $(d) \quad q^2$

38. If $x = 2 + 2^{1/2}$, then what is the value of $x^4 + 16x^{-4}$?

- (a) 152
- (b) 144
- (c) 136
- (d) 132

39. X takes 3 hours longer than Y to walk 30 km.If X doubles his speed, he takes 2 hours less than Y. What is the speed of Y ?

- (a) 3 km/hr(b) 4 km/hr(c) $4\frac{2}{7} \text{ km/hr}$ (d) $4\frac{3}{7} \text{ km/hr}$
- 40. If C is the compound interest on ₹ 10,000 for one year at 4% per annum when compounded quarterly, then which one of the following is correct ?
 - (a) C < ₹ 100
 - (b) ₹ 100 < C < ₹ 200
 - (c) $\neq 200 < C < \neq 400$
 - (d) C > ₹ 400

(15 - A)

आगे आने वाले दो (02) प्रश्नों के लिए निम्नलिखित पर विचार कीजिए :	44. $\sin^2 A + \sin^2 B + \sin^2 C$ किसके बराबर है ?
समीकरण $6x^2 - 25x + \frac{6}{x^2} + \frac{25}{x} + 12 = 0$ पर	(a) 2 (b) $\frac{5}{4}$
विचार कीजिए । 41. $x = \frac{1}{x}$ के संभावित मानों में से एक मान क्या है ?	(d) 1
(a) $\frac{1}{2}$ (b) $\frac{3}{2}$	(d) 3/4 45. वृत्त की त्रिज्या क्या है ?
(c) 2	(a) 4.5 cm (b) 6 cm
(d) $\frac{5}{2}$ 42. $x^2 + \frac{1}{x^2}$ के संभावित मानों में से एक मान क्या है ?	(c) 7.5 cm (d) 15 cm
(a) 6	आगे आने वाले दो (02) प्रश्नों के लिए निम्नलिखित पर विचार कीजिए : किसी बीच की सबद से स्टूसीस उस्स जिस कि
(b) $\frac{62}{9}$ (c) 8	किसी झील की सतह से H मीटर ऊपर किसी बिंदु (P) से एक बादल का C पर उन्नयन कोण 30° है। झील की सतह से बादल की ऊँचाई 2H मीटर है। मान लीजिए बिंदु P से बादल के झील में प्रतिबिंब का अवनमन
 (d) ⁸²/₉ आगे आने वाले तीन (03) प्रश्नों के लिए निम्नलिखित पर 	कोण θ है ।
विचार कीजिए: एक वृत्त के अंतर्गत एक त्रिभुज ABC खींचा गया है,	(a) 30° (b) 45°
जिसकी भुजाएँ AB = 15 cm, BC = 9 cm, CA = 12 cm हैं।	(c) 60° (d) अपर्याप्त डाटा के कारण निर्धारित नहीं किया जा
43. $\cos^2 A + \cos^2 B + \cos^2 C$ किसके बराबर है ? (a) $\frac{3}{4}$	सकता 47. PC किसके बराबर है ?
(b) 1 (c) $\frac{5}{4}$	 (a) H मीटर (b) √2H मीटर
(d) 2	 (c) √3H मीटर (d) 2H मीटर
FDGT-T-EMT (16-	-A)

Consider the following for a	the next two (02) items 44.	*****	at is $\sin^2 A + \sin^2 B + \sin^2 C$ equal to?
that follow :		(a)	2
Consider the equation		(b)	$\frac{5}{4}$
$6x^2 - 25x + \frac{6}{x^2}$	$+\frac{25}{x}+12=0.$	(c)	1
41. What is one of the pos	sible values of $x - \frac{1}{x}$?	(d)	$\frac{3}{4}$
(a) $\frac{1}{2}$	45.	Wha	at is the radius of the circle ?
(b) $\frac{3}{2}$	A Marine Marine And	(a)	4.5 cm
	The Constant of the State	(b)	6 cm
(c) 2 5		(c)	7.5 cm
(d) $\frac{5}{2}$	The second	(d)	15 cm
42. What is one of the pose (a) 6 (b) $\frac{62}{9}$ (c) 8 (d) $\frac{82}{9}$	sible values of $x^2 + \frac{1}{x^2}$? Con that	t follow The poin is 30 of th depr	the following for the next two (02) items o: angle of elevation of a cloud at C from a t (P), H metres above the surface of a lake 0° . The height of the cloud from the surface he lake is 2H metres. Let θ be the angle of ression of the reflection of the cloud in the from the point P.
Consider the following for th	ne next three (03) items 46.	Wha	t is the value of θ ?
hat follow :		(a)	30°
	ith sides AD 15 am	(b)	45°
A triangle ABC w	1LO sides $AD = 10 cm$		
A triangle ABC w BC = 9 cm, CA = 12 cm	n is inscribed in a circle.	(c) (d)	60° Cannot be determined due to
	n is inscribed in a circle.		
BC = 9 cm, CA = 12 cm 13. What is $\cos^2 A + \cos^2 B$	n is inscribed in a circle.	(d)	Cannot be determined due to
BC = 9 cm, CA = 12 cm 13. What is $\cos^2 A + \cos^2 1$ (a) $\frac{3}{4}$	n is inscribed in a circle. B + cos ² C equal to ?	(d)	Cannot be determined due to insufficient data
BC = 9 cm, CA = 12 cm 13. What is $\cos^2 A + \cos^2 D$ (a) $\frac{3}{4}$ (b) 1	n is inscribed in a circle. B + cos ² C equal to ?	(d) Wha	Cannot be determined due to insufficient data t is PC equal to ?
BC = 9 cm, CA = 12 cm 3. What is $\cos^2 A + \cos^2 1$ (a) $\frac{3}{4}$	n is inscribed in a circle. B + cos ² C equal to ?	(d) Wha (a)	Cannot be determined due to insufficient data t is PC equal to ? H metres
BC = 9 cm, CA = 12 cm 13. What is $\cos^2 A + \cos^2 1$ (a) $\frac{3}{4}$ (b) 1	n is inscribed in a circle. B + cos ² C equal to ?	(d) Wha (a) (b)	Cannot be determined due to insufficient data t is PC equal to ? H metres $\sqrt{2}$ H metres

आगे आने वाले तीन (03) प्रश्नों के लिए निम्नलिखित पर विचार कीजिए:

नीचे एक बारंबारता बंटन तालिका दी गई है :

x	0	1	2	3	4	5
f	46	p	q	25	10	5

कुल बारंबारता 200 है और बंटन का माध्य 1.46 है।

p का मान क्या है ? 48.

- (a) 70
- (b) 72
- (c) 76
- (d) 78

q का मान क्या है ? 49.

- (a) 32
- (b) 34
- (c) 36
- (d) 38
- बंटन का माध्यक क्या है ? 50.
 - (a) 1
 - (b) 2
 - (c) 3
 - (d) 4
- FDGT-T-EMT

51. \overline{a} $\tan \theta = \frac{\sqrt{q^2 - p^2}}{p}$; $0 < \theta < 90^\circ$ \overline{e} , \overline{a} $\sec \theta + \cos \theta + 2$ किसके बराबर है ?

(a)
$$\frac{p^2 + q^2}{pq}$$

(b)
$$\frac{(p+q)^2}{pq}$$

(c)
$$\frac{(p+q)^2}{2pq}$$

(d)
$$\frac{(p-q)^2}{pq}$$

- यदि 11 sin θ + 60 cos θ = 61; 0 < θ < 90° है, तो 52. $\sqrt{660 (\tan \theta + \cot \theta)}$ का मान क्या है ?
 - (a) 61
 - $61\sqrt{2}$ (b)
 - 122 (c)
 - $122\sqrt{2}$ (d)
- भुजा लंबाई तत्समक (साइड लेंथ यूनिटी) वाले 53. 15 भुजाओं के किसी सम-बहुभुज के अंतर्गत खींचे गए किसी वृत्त का व्यास क्या है ?
 - 0.5 cot 12° (a)
 - (b). cot 12°
 - 0.5 tan 12° (c)
 - (d) tan 12°

(18-A)

Consider the following for the next **three** (03) items that follow :

A frequency distribution table is given below :

x	0	1	2	3	4	5
f	46	p	q	25	10	5

Total frequency is 200 and mean of the distribution is 1.46.

48. What is the value of p?

(a) 70

(b) 72

(c) 76

(d) 78

1 .

49. What is the value of q?

(a) 32

(b) 34

(c) 36

- (d) 38
- 50. What is the median of the distribution ?(a) 1
 - (b) 2
 - (c) 3

(d) 4

51. If $\tan \theta = \frac{\sqrt{q^2 - p^2}}{p}$; $0 < \theta < 90^\circ$, then what is

 $\sec \theta + \cos \theta + 2$ equal to ?

(a) $\frac{p^2 + q^2}{pq}$ (b) $\frac{(p+q)^2}{pq}$ (c) $\frac{(p+q)^2}{2pq}$ (d) $\frac{(p-q)^2}{pq}$

52. If 11 sin θ + 60 cos θ = 61; 0 < θ < 90°, then what is the value of $\sqrt{660} (\tan \theta + \cot \theta)$?

(a) 61

(b) $61\sqrt{2}$

(c) 122

(d) $122\sqrt{2}$

53. What is the diameter of a circle inscribed in a regular polygon of 15 sides with side length unity?

- (a) $0.5 \cot 12^{\circ}$
- (b) cot 12°
- (c) 0.5 tan 12°
- (d) tan 12°

FDGT-T-EMT

(19 - A)

54.	यदि $x = \frac{1 + \sin\theta}{\cos\theta}$ है, तो $\frac{\tan\theta + \sec\theta - 1}{\tan\theta - \sec\theta + 1}$ किसके	57.	यदि $\frac{1}{\csc \theta - \cot \theta} - \frac{1}{\sin \theta} = x \ $ है, तो
:	बराबर है ?		1 1 किमके त्यात्य है जताँ
	(a) – x		
	(b) x	1	$0 < \theta < \frac{\pi}{2}$ है ?
	(c) 2x		(a) - x
1	(d) $\frac{x}{2}$		(b) x
			(c) $\frac{1}{x}$
55.	निम्नलिखित पर विचार कीजिए :		(d) $-\frac{1}{x}$
	1. $\frac{\tan\theta + \sin\theta}{\tan\theta - \sin\theta} = \frac{\sec\theta + 1}{\sec\theta - 1}$ $\epsilon,$		
	जहाँ 0 < θ < π/2 है ।	58.	$2 \sin^6 \theta + 2 \cos^6 \theta - 3 \sin^4 \theta - 3 \cos^4 \theta$ किसके बराबर है ?
	4		(a) -1
	2. $\frac{\cos^2\theta - \sin^2\theta}{\cos^2\theta + \sin^2\theta} = \frac{2\tan\theta}{\tan^2\theta + 1} \stackrel{\textcircled{\baselineskiplimits}}{\overleftarrow{\baselineskiplimits}},$		(b) 0
	जहाँ 0 < θ < π/2 है ।		(c) 1 (d) 2
	अपर्युक्त में से कौन-सा/कौन-से सर्वसमिकाएँ है/हैं ?	59.	$3600 \sec^2 \theta + 121 \csc^2 \theta$ का न्यूनतम मान क्या है,
	(a) केवल 1		जहाँ $0 < \theta < \frac{\pi}{2}$ है ?
	(b) केवल 2		(a) 1320
	(c) 1 और 2 दोनों		(b) 2401
	(d) न तो 1, न ही 2		(c) 3721
56.	यदि $\frac{\sin\theta + \cos\theta}{\sin\theta - \cos\theta} = 5$ है, जहाँ $0 < \theta < \frac{\pi}{2}, \ \theta \neq \frac{\pi}{4}$	•	(d) 5041
		60.	$\sqrt{\left(rac{1+\sin heta}{\cos heta} ight)^2+\left(rac{\cos heta}{1+\sin heta} ight)^2-2}$ किसके बराबर
	है, तो $\frac{2\sin\theta + 3\cos\theta}{3\sin\theta - 2\cos\theta}$ का मान क्या है ?		
	(a) $\frac{8}{5}$		है, जहाँ $0 < \theta < \frac{\pi}{2}$ है ?
	(b) 2		(a) $\tan \theta$
	(c) $\frac{12}{7}$		(b) $\cot \theta$
	5		(c) $2 \tan \theta$ (d) $2 \cot \theta$
	(d) 3		
FDGT	-T-EMT (20-	- A)	A state of the sta

54.	If $x = \frac{1 + \sin\theta}{\cos\theta}$, then what is $\frac{\tan\theta + \sec\theta - 1}{\tan\theta - \sec\theta + 1}$	57.	If $\frac{1}{\csc \theta - \cot \theta} - \frac{1}{\sin \theta} = x$, then what is
	equal to ?		$\frac{1}{\csc \theta + \cot \theta} - \frac{1}{\sin \theta}$ equal to, where
	(a) – x		$0 < \theta < \frac{\pi}{2}$?
	(b) x		
	(c) 2x		(a) -x
	(d) $\frac{x}{2}$		(b) x
	2		(c) $\frac{1}{x}$
55.	Consider the following :		(d) $-\frac{1}{x}$
	1. $\frac{\tan\theta + \sin\theta}{\tan\theta - \sin\theta} = \frac{\sec\theta + 1}{\sec\theta - 1},$	58.	What is $2 \sin^6 \theta + 2 \cos^6 \theta - 3 \sin^4 \theta - 3 \cos^4 \theta$
	$\tan\theta - \sin\theta \sec\theta - 1$	00.	equal to ?
	where $0 < \theta < \frac{\pi}{2}$.		(a) -1
	$\cos^2 \theta - \sin^2 \theta$ 2ton θ	1	(b) 0
	2. $\frac{\cos^2\theta - \sin^2\theta}{\cos^2\theta + \sin^2\theta} = \frac{2\tan\theta}{\tan^2\theta + 1},$		(c) 1
	where $0 < \theta < \frac{\pi}{2}$.		(d) 2
	Which of the above is/one identities ?		
	Which of the above is/are identities?	59.	What is the minimum value of
	(a) Only 1	59.	
		59.	3600 sec ² θ + 121 cosec ² θ , where $0 < \theta < \frac{\pi}{2}$?
	 (a) Only 1 (b) Only 2 (c) Both 1 and 2 	59.	3600 sec ² θ + 121 cosec ² θ , where $0 < \theta < \frac{\pi}{2}$? (a) 1320
	(a) Only 1(b) Only 2	59.	3600 sec ² θ + 121 cosec ² θ , where $0 < \theta < \frac{\pi}{2}$? (a) 1320 (b) 2401
	 (a) Only 1 (b) Only 2 (c) Both 1 and 2 (d) Neither 1 nor 2 		3600 sec ² θ + 121 cosec ² θ , where $0 < \theta < \frac{\pi}{2}$? (a) 1320 (b) 2401 (c) 3721
56.	 (a) Only 1 (b) Only 2 (c) Both 1 and 2 		3600 sec ² θ + 121 cosec ² θ , where $0 < \theta < \frac{\pi}{2}$? (a) 1320 (b) 2401
56.	 (a) Only 1 (b) Only 2 (c) Both 1 and 2 (d) Neither 1 nor 2 		3600 sec ² θ + 121 cosec ² θ , where $0 < \theta < \frac{\pi}{2}$? (a) 1320 (b) 2401 (c) 3721 (d) 5041
56.	(a) Only 1 (b) Only 2 (c) Both 1 and 2 (d) Neither 1 nor 2 If $\frac{\sin\theta + \cos\theta}{\sin\theta - \cos\theta} = 5$, where $0 < \theta < \frac{\pi}{2}$, $\theta \neq \frac{\pi}{4}$,	4	3600 sec ² θ + 121 cosec ² θ , where $0 < \theta < \frac{\pi}{2}$? (a) 1320 (b) 2401 (c) 3721
56.	(a) Only 1 (b) Only 2 (c) Both 1 and 2 (d) Neither 1 nor 2 If $\frac{\sin\theta + \cos\theta}{\sin\theta - \cos\theta} = 5$, where $0 < \theta < \frac{\pi}{2}$, $\theta \neq \frac{\pi}{4}$, then what is the value of $\frac{2\sin\theta + 3\cos\theta}{3\sin\theta - 2\cos\theta}$? (a) $\frac{8}{5}$	4	$3600 \sec^2 \theta + 121 \csc^2 \theta, \text{ where } 0 < \theta < \frac{\pi}{2} ?$ (a) 1320 (b) 2401 (c) 3721 (d) 5041 What is $\sqrt{\left(\frac{1+\sin\theta}{\cos\theta}\right)^2 + \left(\frac{\cos\theta}{1+\sin\theta}\right)^2 - 2}$ equal to, where $0 < \theta < \frac{\pi}{2} ?$
56.	(a) Only 1 (b) Only 2 (c) Both 1 and 2 (d) Neither 1 nor 2 If $\frac{\sin \theta + \cos \theta}{\sin \theta - \cos \theta} = 5$, where $0 < \theta < \frac{\pi}{2}$, $\theta \neq \frac{\pi}{4}$, then what is the value of $\frac{2 \sin \theta + 3 \cos \theta}{3 \sin \theta - 2 \cos \theta}$? (a) $\frac{8}{5}$ (b) 2	4	$3600 \sec^{2} \theta + 121 \operatorname{cosec}^{2} \theta, \text{ where } 0 < \theta < \frac{\pi}{2} ?$ (a) 1320 (b) 2401 (c) 3721 (d) 5041 What is $\sqrt{\left(\frac{1+\sin\theta}{\cos\theta}\right)^{2} + \left(\frac{\cos\theta}{1+\sin\theta}\right)^{2} - 2}$ equal to, where $0 < \theta < \frac{\pi}{2} ?$ (a) $\tan \theta$
56.	(a) Only 1 (b) Only 2 (c) Both 1 and 2 (d) Neither 1 nor 2 If $\frac{\sin\theta + \cos\theta}{\sin\theta - \cos\theta} = 5$, where $0 < \theta < \frac{\pi}{2}$, $\theta \neq \frac{\pi}{4}$, then what is the value of $\frac{2\sin\theta + 3\cos\theta}{3\sin\theta - 2\cos\theta}$? (a) $\frac{8}{5}$	4	$3600 \sec^2 \theta + 121 \csc^2 \theta, \text{ where } 0 < \theta < \frac{\pi}{2} ?$ (a) 1320 (b) 2401 (c) 3721 (d) 5041 What is $\sqrt{\left(\frac{1+\sin\theta}{\cos\theta}\right)^2 + \left(\frac{\cos\theta}{1+\sin\theta}\right)^2 - 2}$ equal to, where $0 < \theta < \frac{\pi}{2} ?$ (a) $\tan \theta$ (b) $\cot \theta$
56.	(a) Only 1 (b) Only 2 (c) Both 1 and 2 (d) Neither 1 nor 2 If $\frac{\sin \theta + \cos \theta}{\sin \theta - \cos \theta} = 5$, where $0 < \theta < \frac{\pi}{2}$, $\theta \neq \frac{\pi}{4}$, then what is the value of $\frac{2 \sin \theta + 3 \cos \theta}{3 \sin \theta - 2 \cos \theta}$? (a) $\frac{8}{5}$ (b) 2 (c) $\frac{12}{5}$	4	$3600 \sec^2 \theta + 121 \csc^2 \theta, \text{ where } 0 < \theta < \frac{\pi}{2} ?$ (a) 1320 (b) 2401 (c) 3721 (d) 5041 What is $\sqrt{\left(\frac{1+\sin\theta}{\cos\theta}\right)^2 + \left(\frac{\cos\theta}{1+\sin\theta}\right)^2 - 2}$ equal to, where $0 < \theta < \frac{\pi}{2} ?$ (a) $\tan \theta$ (b) $\cot \theta$ (c) $2 \tan \theta$
	(a) Only 1 (b) Only 2 (c) Both 1 and 2 (d) Neither 1 nor 2 If $\frac{\sin \theta + \cos \theta}{\sin \theta - \cos \theta} = 5$, where $0 < \theta < \frac{\pi}{2}, \theta \neq \frac{\pi}{4}$, then what is the value of $\frac{2 \sin \theta + 3 \cos \theta}{3 \sin \theta - 2 \cos \theta}$? (a) $\frac{8}{5}$ (b) 2 (c) $\frac{12}{5}$ (d) 3	4	$3600 \sec^{2} \theta + 121 \operatorname{cosec}^{2} \theta, \text{ where } 0 < \theta < \frac{\pi}{2} ?$ (a) 1320 (b) 2401 (c) 3721 (d) 5041 What is $\sqrt{\left(\frac{1+\sin\theta}{\cos\theta}\right)^{2} + \left(\frac{\cos\theta}{1+\sin\theta}\right)^{2} - 2}$ equal to, where $0 < \theta < \frac{\pi}{2} ?$ (a) $\tan \theta$ (b) $\cot \theta$

		The second second						
61.				65. वि	भिन्न धनपूर्ण संख्याओं			
	निम्नलिखित में से कौन-सा सही है ?				4, 7, 10, 14, 2x + 3, 2x + 5, 22, 23, 30, 50			
29. I.H	(a) xy	+xz - yz = 0	Stalland in Stall	के	आंकड़े आरोही क्रम में हैं। x के विविध मानों हेतु			
in the	(b) xy	+ xz - 2yz = 0	ni water a state a stat		कड़ों (डेटा) के माध्यक के लिए कितने संभावित मान			
	(c) xy	+xz + yz = 0		清に				
	(d) xy	+xz-4yz=0		ç				
62.	120 के सभी संभावित गुणनखंडों का माध्यक क्या है ?				(a) केवल एक मान			
	(a) 10			(b)) केवल दो मान			
il de la	(b) 11	and a state	and the second second	(c)	केवल तीन मान			
	(c) 12		The second second	(d)) पाँच मान			
	(d) 13·	5	and the second is					
63.	50 से मापि	Iत n मानों के 1	एक समुच्चय के विचलनों का					
n na h			16 से मापित इन मानों के	66. यति	र पहली 100 सम धनपूर्ण संख्याओं का माध्य M			
			है । इन मानों का माध्य क्या		तो पहली 100 विषम धनपूर्ण संख्याओं का माध्य			
	है?	viens, and			1 है ?			
	(a) 48·8	5			is maken and he incoming the set of the set			
	(b) 49·0			(a)	M - 1			
	(c) 49·8			(b)	М			
1.	(d) 50·(· · · · · · · · · · · · · · · · · · ·	and the statements					
		and the second second	1	(c)	M + 1			
64.	4 विद्यालयों के छात्रों के संदर्भ में, जो एक परीक्षा में बैठे			(d)	M + 2			
	ह, ानम्नाला	खत सारणी पर	विचार कीजिए :		and a second and a second s			
	विद्यालय	छात्रों की संख्या	परीक्षा में औसत अंक					
	I	60	60		छात्रों के औसत अंक 78.4 पाए गए। लेकिन बाद में			
	II	50	80	पत	ा चला कि 95 को ग़लती से 59 पढ़ लिया गया था			
dines.	III	50	40	औ	र 25 को ग़लती से 52 पढ़ लिया गया था । सही			
	IV	x	50	औ	सत और ग़लत औसत में अंतर क्या है ?			
(A) (S)	यदि सभी चार विद्यालयों के छात्रों के औसत अंक 58 हैं, तो विद्यालय-IV से कितने छात्र परीक्षा में बैठे ?							
				(a)	0.04			
	(a) 38		and the first of	(b)	0.08			
	(b) 40			(0)	0.12			
	(c) 42			(c)	012			
	(d) 44	and the s		(d)	0.18			

FDGT-T-EMT

(22 – A)

61.			nean between y and : bllowing is correct ?	z, 65.		data of different natural numbers 7, 10, 14, 2x + 3, 2x + 5, 22, 23, 30, 50
	(a) xy	y + xz - yz = 0 $y + xz - 2yz = 0$			are	in ascending order. How many postes are there for the median of the data
The second se	(c) $xy + xz + yz = 0$					ous values of x ?
	(d) xy	y + xz - 4yz = 0			(a)	Only one value
62.	What is 120?	s the median of	f all possible factors of	of	(b)	Only two values
	(a) · 10)			(c)	Only three values
	(b) 11 (c) 12		A ALANA AND		-(d)	Five values
	(d) 13	3.5				
63.	The sum of deviations of a set of n values measured from 50 is -10 and the sum of deviations of the values measured from 46 is			f	num	is the mean of the first 100 even nat bers, then what is the mean of 100 odd natural numbers?
		t is the mean of 3·5	the values ?		(a)	M - 1
	 (b) 49.0 (c) 49.5 			C.	(b)	Μ
	(d) 50				(c)	M + 1
64.			g table in respect o to appeared in a test :	f	(d)	. M + 2
	School	Number of students	Average marks in the test	67.		n marks of 50 students were found to
and the	Ι	I 60 60			78.4. But later it was detected that 95 misread as 59 and 25 was misread as	

If the average marks of the students of all four schools are 58, then how many students appeared from School-IV?

80

40

50

50

50

x

(a) 38

II

III

IV

- (b) 40
- (c) 42
- (d) 44

(23 – A)

ssible ta for

tural the

- to be was misread as 59 and 25 was misread as 52. What is the difference between correct mean and incorrect mean?
 - (a) 0.04
 - (b) 0.08
 - (c) 0.12
 - (d) 0.18

- 68. एक त्रिभुज ABC में, $\angle A = 2\theta$, $\angle B = \angle C = 4\theta$ और आगे आने वाले तीन (03) प्रश्नों के लिए निम्नलिखित पर θ , $4 \sin^2 \theta + 2 \sin \theta - 1 = 0$ को संतुष्ट करता है । विचार कीजिए : BC का AB से अनुपात क्या है ?
 - (a) $\sqrt{5} 1$
 - (b) $\frac{(\sqrt{5}-1)}{2}$
 - (c) $\frac{(\sqrt{5}-1)}{4}$
 - (d) $2(\sqrt{5}-1)$
- 69. एक त्रिभुज ABC के अंतर्गत एक वृत्त खींचा जाता है ।
 यह भुजा BC, CA, AB को क्रमश: D, E, F पर स्पर्श करता है । ∠ EDF किसके बराबर है ?
 - (a) $90^{\circ} A$
 - (b) $90^{\circ} \frac{(B+C)}{2}$
 - (c) $90^{\circ} 2A$
 - (d) $90^{\circ} \left(\frac{A}{2}\right)$

70. एक कमरे की लंबाई, इसकी चौड़ाई की $\frac{21}{16}$ गुना है और चौड़ाई, इसकी ऊँचाई की $\frac{4}{3}$ गुना है । यदि कमरे की ऊँचाई H है और इस कमरे में रखी जा सकने वाली सबसे लंबी छड़ की लंबाई L है, तो निम्नलिखित में से कौन-सा सही है ?

- (a) 12L = 29H
- (b) 9L = 25H
- (c) 7L = 23H
- (d) 5L = 13H

FDGT-T-EMT

12 cm त्रिज्या और 16 cm ऊँचाई वाले एक शंक्वाकार बर्तन को पानी से भरा जाता है । एक गोले को पानी में उतारा जाता है और गोले का आकार ऐसा है कि वह बर्तन की दीवारों को स्पर्श करता है और यह मात्र डूबा हुआ है ।

- 71. गोले की त्रिज्या क्या है ?
 - (a) 5 cm
 - (b) 6 cm
 - (c) 6.5 cm
 - (d) 7 cm

72. पानी निकल जाने (ओवरफ्लो) के बाद बर्तन में कितना पानी बचेगा ?

- (a) 288π mL
- (b) $360\pi \, \text{mL}$
- (c) 480π mL
- (d) 500π mL

73. बर्तन के पार्श्वीय पृष्ठीय क्षेत्रफल का गोले के पृष्ठीय क्षेत्रफल से अनुपात क्या है ?

(a) $\frac{4}{3}$ (b) $\frac{3}{2}$ (c) $\frac{5}{3}$ (d) 2

(24 - A)

68.

In a triangle ABC, $\angle A = 2\theta$, $\angle B = \angle C = 4\theta$ Consider the following for the next three (03) items that follow : and θ satisfies $4 \sin^2 \theta + 2 \sin \theta - 1 = 0$. What is the ratio of BC to AB?

- $\sqrt{5} 1$ (a)
- $\frac{(\sqrt{5}-1)}{2}$ (b)
- $\frac{(\sqrt{5}-1)}{4}$ (c)
- $2(\sqrt{5}-1)$ (d)
- A circle is inscribed in a triangle ABC. It 69. touches the sides BC, CA, AB at D, E, F respectively. What is \angle EDF equal to ?
 - 90° A (a)
 - $90^\circ \frac{(B+C)}{2}$ (b)
 - (c) $90^{\circ} 2A$
 - (d) $90^{\circ} \left(\frac{A}{2}\right)$

The length of a room is $\frac{21}{16}$ times its breadth 70. and breadth is $\frac{4}{3}$ times its height. If H is the height of the room and L is the longest rod 73. that can be placed in the room, then which one of the following is correct?

- (a)
- (b)
- (c) 7L = 23H
- (d)

A conical vessel of radius 12 cm and height 16 cm is filled with water. A sphere is lowered into water and its size is such that it touches the sides of the vessel and it is just immersed.

- What is the radius of the sphere ? 71.
 - (a) 5 cm
 - (b) 6 cm
 - 6.5 cm (c)
 - 7 cm (d)

How much water will remain in the vessel 72. after the overflow ?

- $288\pi mL$ (a)
- (b) $\cdot 360\pi \,\mathrm{mL}$
- $480\pi mL$ (c)
- $500\pi \, mL$ (d)

 $\frac{4}{3}$

2

5

3

What is the ratio of lateral surface area of the vessel to the surface area of the sphere?

小学 市 新聞 山田 いきやく

(a) 3 12L = 29H(b) 9L = 25H(c) (d) 2 5L = 13H(25 - A)FDGT-T-EMT

आगे आने वाले **दो (02)** प्रश्नों के लिए निम्नलिखित पर विचार **77.** कीजिए :

किसी वृत्त की *l* लंबाई की एक जीवा, वृत्त के केंद्र पर 90° का कोण बनाती है।

74. लघु खंड का क्षेत्रफल कितना है ?

(a)
$$\frac{l^2}{2} \left(\pi - \frac{1}{2} \right)$$

(b) $\frac{l^2}{4} \left(\pi - \frac{1}{2} \right)$
(c) $\frac{l^2}{4} \left(\frac{\pi}{2} - 1 \right)$
(d) $\frac{l^2}{2} \left(\frac{\pi}{2} - \frac{1}{2} \right)$

75. दीर्घ खंड का क्षेत्रफल कितना है ?

(a) $\frac{l^2}{4} \left(\frac{3\pi}{2} + 1 \right)$ (b) $\frac{l^2}{4} \left(\frac{3\pi}{2} - 1 \right)$ (c) $\frac{l^2}{2} \left(\frac{3\pi}{2} + 1 \right)$

$$(d) \qquad \frac{l^2}{2} \left(\frac{3\pi}{2} - 1\right)$$

 76. त्रिभुज ABC, A पर समकोणीय है और AD, BC पर लंब है । यदि BD = 7.5 cm और DC = 10 cm है, तो AD किसके बराबर है ?

- (a) 5 cm
- (b) $5\sqrt{2}$ cm
- (c) $5\sqrt{3}$ cm
- (d) 10 cm

FDGT-T-EMT

त्रिभुज ABC के आधार BC पर लंब AD, BC को D पर इस प्रकार प्रतिच्छेदित करता है ताकि DB = 3 CD है । निम्नलिखित में से कौन-सा सही है ?

- (a) $2 (AB + AC) (AB AC) = BC^2$ (b) $3 (AB + AC) (AB - AC) = 2 BC^2$ (c) $4 (AB + AC) (AB - AC) = 3 BC^2$ (d) $5 (AB + AC) (AB - AC) = 4 BC^2$ **78.** [쳐ਮुज ABC, C पर समकोणीय है और AC = $\sqrt{3}$ BC है $| \angle ABC$ किसके बराबर है ?
 - (a) 30°
 - (b) 45°
 - (c) 60°
 - (d) 75°

79. त्रिभुज ABC में, $\angle A = 60^{\circ}$ है | $AB^2 + AC^2 - BC^2$ किसके बराबर है ?

- (a) AB.AC
- (b) AB.BC
- (c) AC.BC
- (d) 2 AB.AC

80. ताँबे से बने एक गोले का व्यास 3 cm है । गोले को पिघलाया जाता है और उससे तार बनाई जाती है । यदि तार की लंबाई आधा मीटर है, तो तार का व्यास क्या है ?

- (a) 0.3 cm
- (b) 0.45 cm
- (c) 0.6 cm
- (d) 0.75 cm

(26 - A)

Consider the following for the next **two (02)** items **77.** that follow :

A chord of length l of a circle makes an angle 90° at the centre of the circle.

74. What is the area of the minor segment?

(a)
$$\frac{l^2}{2} \left(\pi - \frac{1}{2} \right)$$

(b) $\frac{l^2}{4} \left(\pi - \frac{1}{2} \right)$
(c) $\frac{l^2}{4} \left(\frac{\pi}{2} - 1 \right)$

(d)
$$\frac{l^2}{2}\left(\frac{\pi}{2}-\frac{1}{2}\right)$$

75. What is the area of the major segment?

(a) $\frac{l^2}{4}\left(\frac{3\pi}{2}+1\right)$

$$(b) \quad \frac{l^2}{4} \left(\frac{3\pi}{2} - 1 \right)$$

c)
$$\frac{l^2}{2}\left(\frac{3\pi}{2}+1\right)$$

(d) $\frac{l^2}{2}\left(\frac{3\pi}{2}-1\right)$

76. Triangle ABC is right-angled at A and AD is perpendicular to BC. If BD = 7.5 cm and DC = 10 cm, then what is AD equal to ?

- (a) 5 cm
- (b) $5\sqrt{2}$ cm
- (c) $5\sqrt{3}$ cm
- (d) 10 cm

The perpendicular AD on the base BC of a triangle ABC intersects BC at D so that DB = 3 CD. Which one of the following is correct?

- (a) $2(AB + AC)(AB AC) = BC^2$
- (b) $3(AB + AC)(AB AC) = 2 BC^{2}$
- (c) $4 (AB + AC) (AB AC) = 3 BC^{2}$
- (d) $5(AB + AC)(AB AC) = 4 BC^{2}$
- **78.** Triangle ABC is right-angled at C and $AC = \sqrt{3}$ BC. What is \angle ABC equal to ?
 - (a) 30°
 - (b) 45°
 - (c) 60°
 - (d) 75°

79. In a triangle ABC, $\angle A = 60^{\circ}$. What is $AB^2 + AC^2 - BC^2$ equal to ?

- (a) AB.AC
- (b) AB.BC
- (c) AC.BC
- (d) 2 AB.AC

80. The diameter of a sphere made of copper is 3 cm. The sphere is melted and recast into a wire. If the length of the wire is half metre, then what is the diameter of the wire ?

- (a) 0.3 cm
- (b) 0.45 cm
- (c) 0.6 cm
- (d) 0.75 cm

(27 - A)

81. एक शंकु की ऊँचाई 30 cm है । इसके आधार के समांतर एक समतल से शंकु के शीर्ष पर एक छोटा शंकु काटा जाता है । यदि इस शंकु का आयतन, दिए गए शंकु के आयतन का $\frac{1}{27}$ है, तो शंकु के छिन्नक (फ्रस्टम) की ऊँचाई क्या है ?

- (a) 10 cm
- (b) 12 cm
- (c) 18 cm
- (d) 20 cm

82. धातु की एक आयताकार चादर 24 cm लंबी और 18 cm चौड़ी है। इसके प्रत्येक कोने से x cm भुजा का एक वर्ग काटा जाता है और बाकी बची चादर से एक खुला डिब्बा (बॉक्स) बनाया जाता है। यदि डिब्बे (बॉक्स) का आयतन 640 घन cm है, तो x का मान क्या है?

- (a) 2
- (b) 3
- (c) 4
- (d) 6

83. मान लीजिए x, y, z एक घनाभ की लंबाई, चौड़ाई, ऊँचाई है । यदि इसका आयतन 400 घन cm और कुल पृष्ठीय क्षेत्रफल 340 वर्ग cm है, तो x⁻¹ + y⁻¹ + z⁻¹ किसके बराबर है ?

(a) $\frac{17}{20}$ (b) $\frac{17}{40}$ (c) $\frac{7}{10}$

(d) $\frac{9}{10}$

एक समलंब (ट्रैपीज़ियम) की दो समांतर भुजाएँ 29 cm और 21 cm हैं । असमांतर भुजाएँ बराबर हैं और प्रत्येक की लंबाई 8.5 cm है । समलंब का क्षेत्रफल क्या है ?

- (a) 187.5 वर्ग cm
- (b) 227.5 वर्ग cm
- (c) 375 वर्ग cm
- (d) 455 वर्ग cm

85. 16 cm भुजा वाली एक वर्गाकार ताँबे की प्लेट का भार 128 gm है । इस प्लेट में से 14 cm व्यास की एक वृत्ताकार डिस्क काटी जाती है । बाकी बचे हिस्से का भार क्या है ? ($\pi = \frac{22}{7}$)

- (a) 48 gm
- (b) 49 gm
- (c) 50 gm
- (d) 51 gm

86. एक समचतुर्भुज का क्षेत्रफल 96 वर्ग cm है और इसके एक विकर्ण की लंबाई 12 cm है । समचतुर्भुज का परिमाप क्या है ?

- (a) 36 cm
- (b) 40 cm
- (c) 44 cm
- (d) 48 cm

87. 10 cm त्रिज्या वाले एक वृत्त के अंतर्गत एक समकोणीय त्रिभुज ABC खींचा जाता है । कर्ण AC पर खींचे गए शीर्षलंब की लंबाई 8 cm है । यदि AB = x cm और BC = y cm है, तो xy का मान क्या है ?

- (a) 60
- (b) 80
- (c) 120
- (d) 160

(28 – A)

- 81. The height of a cone is 30 cm. A small cone is cut off at the top by a plane parallel to its base. If its volume is $\frac{1}{27}$ of the volume of the given cone, then what is the height of the frustum of the cone ?
 - (a) 10 cm
 - (b) 12 cm
 - (c) 18 cm
 - (d) 20 cm
- 82. A rectangular metal sheet is of length 24 cm and breadth 18 cm. From each of its corners a square of side x cm is cut off and an open box is made of the remaining sheet. If the volume of the box is 640 cubic cm, then what is the value of x ?

(a) 2
(b) 3
(c) 4

(d) 6

83. Let x, y, z be the length, breadth, height of a cuboid. If its volume is 400 cubic cm and total surface area is 340 square cm, then what is $x^{-1} + y^{-1} + z^{-1}$ equal to ?

(a) $\frac{17}{20}$ (b) $\frac{17}{40}$ (c) $\frac{7}{10}$ (d) $\frac{9}{10}$ Two parallel sides of a trapezium are 29 cm and 21 cm. Non-parallel sides are equal and each is of length 8.5 cm. What is the area of the trapezium?

- (a) 187.5 square cm
- (b) 227.5 square cm
- (c) 375 square cm
- (d) 455 square cm

A square copper plate of side 16 cm weighs 128 gm. A circular disc of diameter 14 cm is cut off from the plate. What is the weight of the remaining part? $(\pi = \frac{22}{7})$

(a) 48 gm

85.

- (b) 49 gm
- (c) 50 gm
- (d) 51 gm
- 86. The area of a rhombus is 96 square cm and one of its diagonals is of length 12 cm. What is the perimeter of the rhombus ?
 - (a) 36 cm
 - (b) 40 cm
 - (c) 44 cm
 - (d) 48 cm

87. A right-angled triangle ABC is inscribed in a circle of radius 10 cm. The altitude drawn to the hypotenuse AC is of length 8 cm. If AB = x cm and BC = y cm, then what is the value of xy ?

- (a) 60
- (b) 80
- (c) 120
- (d) 160

FDGT-T-EMT

(29 - A)

88. दो वृत्त बाह्यतः स्पर्श करते हैं । उनके क्षेत्रफलों का 91. योगफल 89π वर्ग cm है और उनके केंद्रों के बीच की दूरी 13 cm है । उनकी त्रिज्याओं के बीच का अंतर क्या है ?

(a) 2 cm

- (b) 2.5 cm
- (c) 3 cm
- (d) 3.5 cm

89. एक वर्ग और एक आयत का परिमाप बराबर है । उनके क्षेत्रफलों के बीच 1 वर्ग cm का अंतर है । आयत की लंबाई, उसकी चौड़ाई से कितनी अधिक है ?

- (a) 1 cm
- (b) 2 cm
- (c) 3 cm
- (d) 4 cm

90. दो आयत समान क्षेत्रफल के हैं, जो 480 वर्ग cm के बराबर है । उनकी लंबाई में 6 cm और चौड़ाई में 4 cm का अंतर है । उनके परिमाप में कितना अंतर है ?

- (a) 2 cm
- (b) 4 cm
- (c) 6 cm
- (d) 10 cm

एकसमान मोटाई का, लकड़ी का एक बंद डिब्बा बनाया जाता है । इसकी बाह्य विमाएँ 12 cm, 10 cm और 8 cm हैं । यदि आंतरिक पृष्ठीय क्षेत्रफल 376 वर्ग cm है, तो लकड़ी की मोटाई क्या है ?

- (a) 0.5 cm
- (b) 1 cm
- (c) 1.5 cm
- (d) 2 cm

92. X, Y और Z तीन समबाहु त्रिभुज हैं । X और Y के क्षेत्रफलों का योगफल, Z के क्षेत्रफल के बराबर है । यदि X और Y की भुजाओं की लंबाइयाँ क्रमश: 6 cm और 8 cm हैं, तो Z की भुजा की लंबाई क्या है ?

- (a) 9 cm
- (b) 9.5 cm
- (c) 10 cm
- (d) 10.5 cm

210 m व्यास वाले एक वृत्ताकार पार्क का एक चक्कर लगाने में एक व्यक्ति को कितना समय लगेगा, यदि वह 6 km/hr की चाल से चलता है ? ($\pi = \frac{22}{7}$)

- (a) 6.6 मिनट
- (b) 5·5 मिनट
- (c) 4·4 मिनट
- (d) 3·3 मिनट

FDGT-T-EMT

(30 – A)

- 88. Two circles touch externally. The sum of their areas is 89π square cm and the distance between their centres is 13 cm. What is the difference in their radii ?
 - (a) 2 cm
 - (b) 2.5 cm
 - (c) 3 cm
 - (d) 3.5 cm
- 89. A square and a rectangle have same perimeter. They differ in areas by 1 square cm. The length of the rectangle exceeds its breadth by
 - (a) 1 cm
 - (b) 2 cm
 - (c) 3 cm
 - (d) 4 cm
- 90. Two rectangles are of same area equal to 480 square cm. They differ in lengths by 6 cm and breadths by 4 cm. What is the difference in their perimeters ?
 - (a) 2 cm
 - (b) 4 cm
 - (c) 6 cm
 - (d) 10 cm

FDGT-T-EMT

- A closed box is built of wood of uniform thickness. Its external dimensions are 12 cm, 10 cm and 8 cm. If the inner surface area is 376 square cm, then what is the thickness of the wood?
- (a) 0.5 cm
- (b) 1 cm
- (c) 1.5 cm
- (d) 2 cm

92.

X, Y and Z are three equilateral triangles. The sum of the areas of X and Y is equal to the area of Z. If the side lengths of X and Y are 6 cm and 8 cm respectively, then what is the side length of Z?

- (a) 9 cm
- (b) 9.5 cm
- (c) 10 cm
- (d) 10.5 cm
- What is the time taken by a person to cover one round of a circular park of diameter 210 m if he walks at a speed of 6 km/hr ? $(\pi = \frac{22}{\pi})$
- (a) 6.6 minutes
- (b) 5.5 minutes
- (c) 4.4 minutes
- (d) 3.3 minutes

(31 - A)

2√3 cm की भुजा वाले एक समबाह त्रिभुज के अंतर्गत 97. निम्नलिखित कथनों पर विचार कीजिए : 94. एक वृत्त खींचा जाता है, जो त्रिभुज की भुजाओं को स्पर्श करता है । त्रिभुज के शेष बचे हिस्से का क्षेत्रफल क्या है ?

- $(2\sqrt{3} \pi)$ वर्ग cm (a)
- (b) $(3\sqrt{3} \pi)$ वर्ग cm
- $(4\sqrt{3} 2\pi)$ वर्ग cm (c)
- $(4\sqrt{3} \pi)$ arí cm (d)

एक त्रिभुज की भुजाओं की लंबाई x cm, x + 13 cm 95. और x + 26 cm हैं । यदि इसका क्षेत्रफल 126 वर्ग cm है. तो x का मान क्या है ?

- (a) 18
- (b) 17
- (c) 16
- (d) 15

ABCD एक समांतर चतुर्भुज है । A, B और C से 96. गुज़रता हुआ एक वृत्त CD (बढ़ाई गई) को E पर प्रतिच्छेदित करता है । निम्नलिखित में से कौन-सा/ कौन-से सही है/हैं ?

- AE = AD1.
- 2. CD = DE

नीचे दिए गए कूट का प्रयोग कर सही उत्तर चुनिए :

- (a) केवल 1
- केवल 2 (b)
- 1 और 2 दोनों (c)
- (d) न तो 1, न ही 2

FDGT-T-EMT

- एक समबाह त्रिभुज में, केंद्रक और परिवृत्त का 1. केंद्र संपाती हैं।
- एक चक्रीय चतुर्भुज के कोण द्विभाजक, एक अन्य 2. चक्रीय चतुर्भुज बनाते हैं।
- प्रत्येक चक्रीय समांतर चतुर्भुज एक आयत होता 3. है।

उपर्युक्त कथनों में से कौन-से सही हैं ?

- (a) केवल 1 और 2
- (b) केवल 2 और 3
- (c) केवल 1 और 3
- (d) 1, 2 और 3
- ABCD एक समलंब (ट्रैपीज़ियम) है, जिसमें AB, DC 98. के समांतर है। शीर्ष A, B, C और D एक वृत्त से होकर गुज़रते हैं । निम्नलिखित में से कौन-से सही हैं ?
 - AD = BC1.
 - $\angle A + \angle C = 180^{\circ}$ 2.
 - $\angle A + \angle D = 180^{\circ}$ 3.

नीचे दिए गए कूट का प्रयोग कर सही उत्तर चुनिए :

- केवल 1 और 2 (a)
- केवल 2 और 3 (b)
- केवल 1 और 3 (c)
- 1, 2 और 3 (d)

(32 - A)

94. In an equilateral triangle of side 2√3 cm, a circle is inscribed touching the sides. What is the area of the remaining portion of the triangle?

- (a) $(2\sqrt{3} \pi)$ square cm
- (b) $(3\sqrt{3} \pi)$ square cm
- (c) $(4\sqrt{3} 2\pi)$ square cm
- (d) $(4\sqrt{3} \pi)$ square cm

95. A triangle has side lengths x cm, x + 13 cm and x + 26 cm. If its area is 126 square cm, then what is the value of x ?

- (a) 18
- (b) 17
- (c) 16
- (d) 15

96. ABCD is a parallelogram. A circle through A, B and C intersects CD (produced) at E. Which of the following is/are correct ?

- 1. AE = AD
- 2. CD = DE

Select the correct answer using the code given below :

- (a) Only 1
- (b) Only 2
- (c) Both 1 and 2
- (d) Neither 1 nor 2

FDGT-T-EMT

Consider the following statements :

- 1. In an equilateral triangle, the centroid and centre of circumcircle coincide.
- 2. Angle bisectors of a cyclic quadrilateral form another cyclic quadrilateral.
- 3. Every cyclic parallelogram is a rectangle.

Which of the statements given above are correct?

- (a) Only 1 and 2
- (b) Only 2 and 3
- (c) Only 1 and 3
- (d) 1, 2 and 3
- **98.** ABCD is a trapezium in which AB is parallel to DC. The vertices A, B, C and D pass through a circle. Which of the following are correct ?
 - 1. AD = BC
 - 2. $\angle A + \angle C = 180^{\circ}$
 - 3. $\angle A + \angle D = 180^{\circ}$

Select the correct answer using the code given below :

- (a) Only 1 and 2
- (b) Only 2 and 3

Only 1 and 3

- Carl Charles State
- (d) 1, 2 and 3

(c)

(33-A)

99. ABCD एक चक्रीय चतुर्भुज है । AB और DC को जब
बढ़ाया जाता है, तो वे E पर मिलती हैं । निम्नलिखित
कश्वनों में से कौन-सा/कौन-से सही है/हैं ?100. एक त्रिभुज ABC में, DE एक रेखाखंड है जो AB को
D और AC को E पर इस प्रकार प्रतिच्छेदित करता है
कि DE समांतर है BC के । यह रेखाखंड त्रिभुज को
समान क्षेत्रफल वाले दो भागों में बाँटता है । $\frac{BD}{AB}$

किसके बराबर है ?

(a)
$$\frac{\sqrt{2}-1}{2}$$

(b) $\frac{\sqrt{2}-1}{\sqrt{2}}$
(c) $\frac{\sqrt{3}-1}{\sqrt{3}}$

(d) $\sqrt{2}$

नीचे दिए गए कूट का प्रयोग कर सही उत्तर चुनिए : (a) केवल 1 (b) केवल 2

 $\angle CBE + \angle DAE = 180^{\circ}$.

(c) 1 और 2 दोनों

2.

(d) न तो 1, न ही 2

- **99.** ABCD is a cyclic quadrilateral. AB and DC when produced, meet in E. Which of the following statements is/are correct?
 - 1. \triangle EBC is similar to \triangle EAD.

2. $\angle CBE + \angle DAE = 180^{\circ}$.

Select the correct answer using the code given below :

- (a) Only 1
- (b) Only 2
- (c) Both 1 and 2
- (d) Neither 1 nor 2

100. In a triangle ABC, DE is a line segment which intersects AB at D and AC at E such that DE is parallel to BC. The line segment divides the triangle in two parts of equal area. What is $\frac{BD}{AB}$ equal to?

a)
$$\frac{\sqrt{2}-1}{2}$$

b) $\frac{\sqrt{2}-1}{\sqrt{2}}$
c) $\frac{\sqrt{3}-1}{\sqrt{3}}$
d) $\sqrt{2}$

FDGT-T-EMT

FDGT-T-EMT

where the set of the s

and the second of the second o

THUR THE MERICA

DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE TOLD TO DO SO

T.B.C. : FDGT-T-EMT

Test Booklet Series

TEST BOOKLET

ELEMENTARY MATHEMATICS

Time Allowed : Two Hours

Maximum Marks : 100

INSTRUCTIONS

- 1. IMMEDIATELY AFTER THE COMMENCEMENT OF THE EXAMINATION, YOU SHOULD CHECK THAT THIS TEST BOOKLET DOES **NOT** HAVE ANY UNPRINTED OR TORN OR MISSING PAGES OR ITEMS, ETC. IF SO, GET IT REPLACED BY A COMPLETE TEST BOOKLET.
- 2. Please note that it is the candidate's responsibility to encode and fill in the Roll Number and Test Booklet Series A, B, C or D carefully and without any omission or discrepancy at the appropriate places in the OMR Answer Sheet. Any omission/discrepancy will render the Answer Sheet liable for rejection.
- You have to enter your Roll Number on the Test Booklet in the Box provided alongside.
 DO NOT write anything else on the Test Booklet.
- 4. This Test Booklet contains 100 items (questions). Each item is printed both in *Hindi* and *English*. Each item comprises four responses (answers). You will select the response which you want to mark on the Answer Sheet. In case you feel that there is more than one correct response, mark the response which you consider the best. In any case, choose *ONLY ONE* response for each item.
- 5. You have to mark all your responses **ONLY** on the separate Answer Sheet provided. See directions in the Answer Sheet.
- 6. All items carry equal marks.
- 7. Before you proceed to mark in the Answer Sheet the response to various items in the Test Booklet, you have to fill in some particulars in the Answer Sheet as per instructions sent to you with your Admission Certificate.
- 8. After you have completed filling in all your responses on the Answer Sheet and the examination has concluded, you should hand over to the Invigilator *only the Answer Sheet*. You are permitted to take away with you the Test Booklet.
- 9. Sheets for rough work are appended in the Test Booklet at the end.

10. Penalty for wrong answers :

THERE WILL BE PENALTY FOR WRONG ANSWERS MARKED BY A CANDIDATE IN THE OBJECTIVE TYPE QUESTION PAPERS.

- (i) There are four alternatives for the answer to every question. For each question for which a wrong answer has been given by the candidate, **one-third** of the marks assigned to that question will be deducted as penalty.
- (ii) If a candidate gives more than one answer, it will be treated as a **wrong answer** even if one of the given answers happens to be correct and there will be same penalty as above to that question.
- (iii) If a question is left blank, i.e., no answer is given by the candidate, there will be **no penalty** for that question.

DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE TOLD TO DO SO

ध्यान दें : अनुदेशों का हिन्दी रूपान्तर इस पुस्तिका के मुख पृष्ठ पर छपा है ।

FDGT-T-EMT

(40 - A)