#### MARKING SCHEME

#### CLASS XII

# MATHEMATICS (CODE-041)

### **SECTION:** A (Solution of MCQs of 1 Mark each)

| Q no. | ANS          | HINTS/SOLUTION                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.    | ( <b>D</b> ) | For a square matrix A of order $n \times n$ , we have $A.(adj A) =  A I_n$ , where $I_n$ is the identity matrix of order $n \times n$ .<br>So, $A.(adj A) = \begin{bmatrix} 2025 & 0 & 0 \\ 0 & 2025 & 0 \\ 0 & 0 & 2025 \end{bmatrix} = 2025I_3 \implies  A  = 2025 \&  adj A  =  A ^{3-1} = (2025)^2$<br>$\therefore  A  +  adj A  = 2025 + (2025)^2$ .                                                                                 |
| 2.    | (A)          | $P \qquad Y \qquad W \qquad Y$ $\downarrow Order \qquad \downarrow Order \qquad \downarrow Order \qquad \downarrow Order$ $p \times k \qquad 3 \times k \qquad n \times 3 \qquad 3 \times k$ For PY to exist Order of WY $k = 3 \qquad = n \times k$ Order of PY = $p \times k$ For PY + WY to exist order (PY) = order (WY) $\therefore p = n$                                                                                           |
| 3.    | (C)          | $y = e^{x} = \frac{dy}{dx} = e^{x}$<br>In the domain (R) of the function, $\frac{dy}{dx} > 0$ , hence the function is strictly increasing in $(-\infty, \infty)$                                                                                                                                                                                                                                                                          |
| 4.    | <b>(B</b> )  | $ A  = 5,  B^{-1}AB ^2 = ( B^{-1}  A  B )^2 =  A ^2 = 5^2.$                                                                                                                                                                                                                                                                                                                                                                               |
| 5.    | ( <b>B</b> ) | A differential equation of the form $\frac{dy}{dx} = f(x, y)$ is said to be homogeneous, if $f(x, y)$ is a<br>homogeneous function of degree 0.<br>Now, $x^n \frac{dy}{dx} = y \left( \log_e \frac{y}{x} + \log_e e \right) \Rightarrow \frac{dy}{dx} = \frac{y}{x^n} \left( \log_e e \cdot \left( \frac{y}{x} \right) \right) = f(x, y)$ ; ( <i>Let</i> ). $f(x, y)$ will be a<br>homogeneous function of degree <b>0</b> , if $n = 1$ . |
| 6.    | (A)          | Method 1: (Short cut)<br>When the points $(x_1, y_1), (x_2, y_2)$ and $(x_1 + x_2, y_1 + y_2)$ are collinear in the Cartesian plane then<br>$\begin{vmatrix} x_1 - x_2 & y_1 - y_2 \\ x_1 - (x_1 + x_2) & y_1 - (y_1 + y_2) \end{vmatrix} = 0 \Rightarrow \begin{vmatrix} x_1 - x_2 & y_1 - y_2 \\ -x_2 & -y_2 \end{vmatrix} = (-x_1y_2 + x_2y_2 + x_2y_1 - x_2y_2) = 0$<br>$\Rightarrow x_2y_1 = x_1y_2.$                                |

|     |             | Method 2:                                                                                                                                                                                                                                                                                                             |                                                                                                                  |  |  |
|-----|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--|--|
|     |             | When the points $(x_1, y_1), (x_2, y_2)$                                                                                                                                                                                                                                                                              | $x_{1}$ ) and $(x_{1} + x_{2}, y_{1} + y_{2})$ are collinear in the Cartesian plane then                         |  |  |
|     |             | $\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_1 + x_2 & y_1 + y_2 & 1 \end{vmatrix} = 0$                                                                                                                                                                                                                       |                                                                                                                  |  |  |
|     |             |                                                                                                                                                                                                                                                                                                                       | $-1(x_1y_1+x_1y_2-x_1y_1-x_2y_1)+(x_1y_2-x_2y_1)=0$                                                              |  |  |
|     |             | $\Rightarrow x_2 y_1 = x_1 y_2.$                                                                                                                                                                                                                                                                                      |                                                                                                                  |  |  |
| 7.  | (A)         | $A = \begin{bmatrix} 0 & 1 & c \\ -1 & a & -b \\ 2 & 3 & 0 \end{bmatrix}$                                                                                                                                                                                                                                             |                                                                                                                  |  |  |
|     |             |                                                                                                                                                                                                                                                                                                                       | When the matrix A is skew symmetric then $A^T = -A \Rightarrow a_{ij} = -a_{ji}$ ;                               |  |  |
|     |             | $\Rightarrow$ c = -2; a = 0 and b = 3                                                                                                                                                                                                                                                                                 |                                                                                                                  |  |  |
|     |             | So, $a+b+c=0+3-2=1$ .                                                                                                                                                                                                                                                                                                 | So, $a+b+c=0+3-2=1$ .                                                                                            |  |  |
| 8.  | (C)         | $P(\overline{A}) = \frac{1}{2}; P(\overline{B}) = \frac{2}{3}; P(A \cap B)$                                                                                                                                                                                                                                           | $)=\frac{1}{4}$                                                                                                  |  |  |
|     |             | $\Rightarrow P(A) = \frac{1}{2}; P(B) = \frac{1}{3}$                                                                                                                                                                                                                                                                  |                                                                                                                  |  |  |
|     |             | We have, $P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{1}{2} + \frac{1}{3} - \frac{1}{4} = \frac{7}{12}$                                                                                                                                                                                                           |                                                                                                                  |  |  |
|     |             | $P\left(\frac{\overline{A}}{\overline{B}}\right) = \frac{P\left(\overline{A} \cap \overline{B}\right)}{P\left(\overline{B}\right)} = \frac{P\overline{(A \cup B)}}{P\left(\overline{B}\right)} = \frac{1 - P\left(A \cup B\right)}{P\left(\overline{B}\right)} = \frac{1 - \frac{7}{12}}{\frac{2}{3}} = \frac{5}{8}.$ |                                                                                                                  |  |  |
| 9.  | <b>(B</b> ) | For obtuse angle, $\cos \theta < 0 =>$                                                                                                                                                                                                                                                                                | $\vec{p}.\vec{q} < 0$                                                                                            |  |  |
|     |             | $2\alpha^2-3\alpha+\alpha<0 \implies 2\alpha^2-2$                                                                                                                                                                                                                                                                     | $2\alpha < 0 \Longrightarrow \alpha \in (0,1)$                                                                   |  |  |
| 10. | (C)         | $\left  \vec{a} \right  = 3, \left  \vec{b} \right  = 4, \left  \vec{a} + \vec{b} \right  = 5$                                                                                                                                                                                                                        |                                                                                                                  |  |  |
|     |             | We have , $\left \vec{a} + \vec{b}\right ^2 + \left \vec{a} - \vec{b}\right ^2 = 2\left(\left \vec{a} - \vec{b}\right ^2\right)$                                                                                                                                                                                      | $\left \vec{a}\right ^2 + \left \vec{b}\right ^2 = 2(9+16) = 50 \Rightarrow \left \vec{a} - \vec{b}\right  = 5.$ |  |  |
| 11. | <b>(B</b> ) | Corner point                                                                                                                                                                                                                                                                                                          | Value of the objective function $Z = 4x + 3y$                                                                    |  |  |
|     |             | 1. O(0,0)                                                                                                                                                                                                                                                                                                             | z = 0                                                                                                            |  |  |
|     |             | 2. <i>R</i> (40,0)                                                                                                                                                                                                                                                                                                    | <i>z</i> = 160                                                                                                   |  |  |
|     |             | 3. Q(30,20)                                                                                                                                                                                                                                                                                                           | z = 120 + 60 = 180                                                                                               |  |  |
|     |             | 4. P(0,40)                                                                                                                                                                                                                                                                                                            | <i>z</i> = 120                                                                                                   |  |  |
|     |             | Since, the feasible region is bounded so the maximum value of the objective function $z = 180$ is at $Q(30, 20)$ .                                                                                                                                                                                                    |                                                                                                                  |  |  |

| 20. | (A)          | Both (A) and (R) are true and (R) is the correct explanation of (A).                                                                                                                                                        |
|-----|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 19. | (A)          | Both (A) and (R) are true and (R) is the correct explanation of (A).                                                                                                                                                        |
|     |              | So, required area (in sq units ) is $= \left  2 \int_{0}^{4} 2\sqrt{y} dy \right  = 4 \left[ \frac{y^{\frac{3}{2}}}{\frac{3}{2}} \right]_{0}^{4} = \frac{64}{3}.$                                                           |
| 18. | ( <b>B</b> ) | continuous and differentiable at x = 2.5 .The required region is symmetric about the y - axis.                                                                                                                              |
| 17. | ( <b>D</b> ) | The graph of the function $f: R \to R$ defined by $f(x) = [x]$ ; (where [.] denotes G.I.F) is a straight<br>line $\forall x \in (2.5-h, 2.5+h)$ , 'h' is an infinitesimally small positive quantity. Hence, the function is |
|     |              | the minimum value of the objective function $Z = 18x + 10y$ is 134 at $P(3,8)$ .                                                                                                                                            |
| 16. | (D)          | Since the inequality $Z = 18x + 10y < 134$ has no point in common with the feasible region hence                                                                                                                            |
| 15. | <b>(B)</b>   | The graph represents $y = \cos^{-1} x$ whose domain is $[-1,1]$ and range is $[0,\pi]$ .                                                                                                                                    |
|     |              | $y = x \log x - x + c$<br>hence the correct option is ( <b>B</b> ).                                                                                                                                                         |
|     |              | $dy = \log x  dx \implies \int dy = \int \log x  dx$                                                                                                                                                                        |
| 14. | <b>(B)</b>   | The given differential equation $e^{y'} = x \implies \frac{dy}{dx} = \log x$                                                                                                                                                |
|     |              | $\therefore \int_{0}^{2\pi} \csc^{7} x  dx = 0; \text{ Using the property } \int_{0}^{2a} f(x) dx = 0, \text{ if } f(2a-x) = -f(x).$                                                                                        |
|     |              | Now, $f(2\pi - x) = \csc^7(2\pi - x) = -\csc^7 x = -f(x)$                                                                                                                                                                   |
|     |              | Let $f(x) = \cos e c^7 x$ .                                                                                                                                                                                                 |
| 13. | (A)          | We know, $\int_{0}^{2a} f(x) dx = 0$ , if $f(2a - x) = -f(x)$                                                                                                                                                               |
|     |              | $= -\frac{1}{2}\sqrt{1 + \frac{1}{x^4}} + c = -\frac{1}{2x^2}\sqrt{1 + x^4} + c$                                                                                                                                            |
|     |              | $=-\frac{1}{4}\int \frac{dt}{t^{\frac{1}{2}}} = -\frac{1}{4} \times 2 \times \sqrt{t} + c$ , where 'c' denotes any arbitrary constant of integration.                                                                       |
|     |              | (Let $1 + x^{-4} = 1 + \frac{1}{x^4} = t$ , $dt = -4x^{-5}dx = -\frac{4}{x^5}dx \Rightarrow \frac{dx}{x^5} = -\frac{1}{4}dt$ )                                                                                              |
| 12. | (A)          | $\int \frac{dx}{x^3 (1+x^4)^{\frac{1}{2}}} = \int \frac{dx}{x^5 \left(1+\frac{1}{x^4}\right)^{\frac{1}{2}}}$                                                                                                                |

## Section –B

[This section comprises of solution of very short answer type questions (VSA) of 2 marks each]

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 01     | π                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| $\begin{vmatrix} z > 3x < 4 \\ z > x < -\frac{4}{3} \\ \therefore x \in \left(-\infty, -\frac{4}{3}\right) & 1 \end{vmatrix}$ 22. The marginal cost function is $C'(x) = 0.00039x^2 + 0.004x + 5.$ $C'(150) = \overline{1} 14.375.$ 1 23.(a) $y = \tan^{-1}x$ and $z = \log_{-}x$ . Then $\frac{dy}{dx} = \frac{1}{1+x^2}$ $\frac{1}{2}$ and $\frac{dz}{dx} = \frac{1}{x}$ $\frac{dy}{dz} = \frac{dy}{dz}$ $\frac{dy}{dz} = \frac{dy}{dz}$ $\frac{1}{2}$ $\frac{dy}{dz} = \frac{dy}{dz}$ $\frac{1}{x}$ $\frac{1}{2}$ $\frac{dy}{dz} = \frac{dy}{dz}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{dy}{dz} = \frac{dy}{dz}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{dy}{dz} = \frac{dy}{dz}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{dy}{dz} = (\cos x)^*. \text{ Then, } y = e^{z \log_{-} \cos x}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{dy}{dx} = (\cos x)^* (\log_{-} \cos x + x. \frac{1}{\cos(-\sin x)}) = \frac{dy}{dx} = e^{z \log_{-} \cos x} \frac{d}{dx} (x \log_{-} \cos x)$ $\frac{1}{2}$ $\frac{dy}{dx} = (\cos x)^* \left\{ \log_{-} \cos x + x. \frac{1}{\cos(-\sin x)} \right\} \Rightarrow \frac{dy}{dx} = (\cos x)^* (\log_{-} \cos x - x \tan x).$ 1 24.(a) We have $\overline{b} + \lambda \overline{c} = (-1 + 3\lambda)i + (2 + \lambda) i + \overline{b}$ $(\overline{b} + \lambda \overline{c}) . \overline{a} = 0 \Rightarrow 2(-1 + 3\lambda) + 2(2 + \lambda) + 3 = 0$ $\frac{1}{2}$ $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21     | $\cot^{-1}(3x+5) > \frac{\pi}{4} = \cot^{-1}1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{1}{2}$ |
| $\begin{vmatrix} = x < -\frac{4}{3} \\ \therefore x \in \left(-\infty, -\frac{4}{3}\right) & 1 \end{vmatrix}$ 22. The marginal cost function is $C'(x) = 0.00039x^3 + 0.004x + 5.$ $C'(150) = \overline{1} 14.375.$ 1 23.(a) $y = \tan^{-1}x$ and $z = \log_{\tau}x$ . Then $\frac{dy}{dx} = \frac{1}{1+x^2}$ $\begin{cases} \frac{dy}{dx} = \frac{1}{x} \\ \frac{dy}{dz} = \frac{dy}{dx} \\ \frac{dz}{dx} = \frac{1}{x} \\ \frac{1}{2} \\ \frac{dy}{dz} = \frac{dy}{dx} \\ \frac{dz}{dx} \\ \frac{dz}{dx} = \frac{1}{x} \\ \frac{1}{2} \\ \frac{dy}{dz} = \frac{dy}{dx} \\ \frac{dz}{dx} \\ \frac{dz}{dx} \\ \frac{dy}{dx} = (\cos x)^x. Then, y = e^{-\log_{x} \cos x} \\ 0 n differentiating both sides with respect to x, we get \frac{dy}{dx} = e^{-\log_{x} \cos x} \frac{d}{dx} (x \log_{x} \cos x) \\ \frac{1}{2} \\ \frac{dy}{dx} = (\cos x)^x \left\{ \log_{x} \cos x \frac{d}{dx} (x) + x \frac{d}{dx} (\log_{x} \cos x) \right\} \\ \frac{dy}{dx} = (\cos x)^x \left\{ \log_{x} \cos x \frac{d}{dx} (x) + x \frac{d}{dx} (\log_{x} \cos x) \right\} \\ \frac{dy}{dx} = (\cos x)^x \left\{ \log_{x} \cos x \frac{d}{dx} (x) + x \frac{d}{dx} (\log_{x} \cos x) \right\} \\ \frac{1}{2} \\ \frac{dy}{dx} = (\cos x)^x \left\{ \log_{x} \cos x \frac{d}{dx} (x) + x \frac{d}{dx} (\log_{x} \cos x) \right\} \\ \frac{1}{2} \\ \frac{dy}{dx} = (\cos x)^x \left\{ \log_{x} \cos x \frac{d}{dx} (x) + x \frac{d}{dx} (\log_{x} \cos x) \right\} \\ \frac{1}{2} \\ \frac{dy}{dx} = (\cos x)^x \left\{ \log_{x} \cos x \frac{d}{dx} (x) + x \frac{d}{dx} (\log_{x} \cos x) \right\} \\ \frac{1}{2} \\ \frac{dy}{dx} = (\cos x)^x \left\{ \log_{x} \cos x \frac{d}{dx} (x) + x \frac{d}{dx} (\log_{x} \cos x) \right\} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{dy}{dx} = (\cos x)^x \left\{ \log_{x} \cos x \frac{d}{dx} (x) + x \frac{d}{dx} (\log_{x} \cos x) \right\} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{dy}{dx} = (\cos x)^x \left\{ \log_{x} \cos x \frac{d}{dx} (x) + 2(2 + \lambda) \right\} \\ \frac{1}{2} \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | =>3x + 5 < 1 (as cot <sup>-1</sup> x is strictly decreasing function in its domain)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{1}{2}$ |
| $\begin{array}{ c c c c c } & \therefore x \in \left(-\infty, -\frac{4}{3}\right) & 1 \\ \hline & 1 \\ \hline & 22. & \text{The marginal cost function is } C^*(x) = 0.00039x^2 + 0.004x + 5. & 1 \\ \hline & C^*(150) = ₹ 14.375. & 1 \\ \hline & C^*(150) = ₹ 14.375. & 1 \\ \hline & 1 \\ \hline & 23.(a) & y = \tan^{-1}x \text{ and } z = \log_e x. & & & & \\ \hline & & Then \frac{dy}{dx} = \frac{1}{1+x^2} & & & 1 \\ \hline & & & \frac{dy}{dx} = \frac{1}{x} & & & & 1 \\ \hline & & & \frac{dy}{dx} = \frac{dy}{dx} & & & \\ \hline & & & \frac{dy}{dx} = \frac{dy}{dx} & & & & \\ \hline & & & \frac{dy}{dx} = \frac{dy}{dx} & & & & \\ \hline & & & & \frac{1}{2} & & & \\ \hline & & & & \frac{1}{2} & & & \\ \hline & & & & \frac{1}{2} & & & \\ \hline & & & & \frac{1}{2} & & & \\ \hline & & & & \frac{1}{2} & & & \\ \hline & & & & \frac{1}{2} & & & \\ \hline & & & & & \frac{1}{2} & & \\ \hline & & & & & \frac{dy}{dx} = (\cos x)^*. & \text{Then, } y = e^{x \log_e \cos x} \\ \hline & & & & & & \frac{dy}{dx} = e^{x \log_e \cos x} \frac{d}{dx} (x \log_e \cos x) & & & \\ \hline & & & & & \frac{1}{2} & & \\ \hline & & & & & \frac{dy}{dx} = (\cos x)^* \left\{ \log_e \cos x \frac{d}{dx} (x) + x \frac{d}{dx} (\log_e \cos x) \right\} & & & & \frac{1}{2} \\ \hline & & & & & \frac{dy}{dx} = (\cos x)^* \left\{ \log_e \cos x \frac{d}{dx} (x) + x \frac{d}{dx} (\log_e \cos x) \right\} & & & & \frac{1}{2} \\ \hline & & & & & \frac{dy}{dx} = (\cos x)^* \left\{ \log_e \cos x + x \cdot \frac{1}{\cos x} (-\sin x) \right\} \Rightarrow \frac{dy}{dx} = (\cos x)^* (\log_e \cos x - x \tan x) \\ 1 & & & & \frac{1}{2} \\ \hline & & & & & & \frac{1}{2} \\ \hline & & & & & & \frac{1}{2} \\ \hline & & & & & & \frac{1}{2} \\ \hline & & & & & & & \frac{1}{2} \\ \hline & & & & & & & & \frac{1}{2} \\ \hline & & & & & & & & \frac{1}{2} \\ \hline & & & & & & & & & & \frac{1}{2} \\ \hline & & & & & & & & & & & & \\ \hline & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |
| $\begin{array}{ c c c c c }\hline C'(150) = \overline{1} \ 14.375. & 1\\ \hline 23.(a) & y = \tan^{-1}x \ \text{and} \ z = \log_{e}x \\ \hline \text{Then} \ \frac{dy}{dx} = \frac{1}{1+x^{2}} & \frac{1}{2} \\ & \text{and} \ \frac{dx}{dx} = \frac{1}{x} & \frac{1}{2} \\ & \text{and} \ \frac{dx}{dx} = \frac{1}{x} & \frac{1}{2} \\ & \frac{dy}{dz} = \frac{dy}{dz} \\ & \text{So.} & \frac{1}{2} \\ & \text{So.} & \frac{1}{2} \\ & \frac{1}{2} \\ \hline \frac{1+x^{2}}{\frac{1}{x}} = \frac{x}{1+x^{2}}. & \frac{1}{2} \\ \hline \text{OR} & \text{Let } y = (\cos x)^{*}. \text{ Then, } y = e^{z\log_{e}\cos x} \\ & \text{On differentiating both sides with respect to } x, \text{ we get } \ \frac{dy}{dx} = e^{z\log_{e}\cos x} \frac{d}{dx}(x\log_{e}\cos x) & \frac{1}{2} \\ & \Rightarrow \frac{dy}{dx} = (\cos x)^{*} \left\{ \log_{e}\cos x \frac{d}{dx}(x) + x \frac{d}{dx}(\log_{e}\cos x) \right\} & \frac{1}{2} \\ & \Rightarrow \frac{dy}{dx} = (\cos x)^{*} \left\{ \log_{e}\cos x \frac{d}{dx}(x) + x \frac{d}{dx}(\log_{e}\cos x) \right\} & \frac{1}{2} \\ & \Rightarrow \frac{dy}{dx} = (\cos x)^{*} \left\{ \log_{e}\cos x + x. \frac{1}{\cos x}(-\sin x) \right\} \Rightarrow \frac{dy}{dx} = (\cos x)^{*} (\log_{e}\cos x - x\tan x). & 1 \\ \hline 24.(a) & \text{We have } \vec{b} + \lambda \vec{c} = (-1 + 3\lambda) \hat{1} + (2 + \lambda) \hat{1} + \hat{3} = 0 \\ & \lambda = -\frac{5}{a} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1             |
| $\begin{array}{ c c c c c }\hline C'(150) = \overline{1} \ 14.375. & 1\\ \hline 23.(a) & y = \tan^{-1}x \ \text{and} \ z = \log_{e}x \\ \hline \text{Then} \ \frac{dy}{dx} = \frac{1}{1+x^{2}} & \frac{1}{2} \\ & \text{and} \ \frac{dx}{dx} = \frac{1}{x} & \frac{1}{2} \\ & \text{and} \ \frac{dx}{dx} = \frac{1}{x} & \frac{1}{2} \\ & \frac{dy}{dz} = \frac{dy}{dz} \\ & \text{So.} & \frac{1}{2} \\ & \text{So.} & \frac{1}{2} \\ & \frac{1}{2} \\ \hline \frac{1+x^{2}}{\frac{1}{x}} = \frac{x}{1+x^{2}}. & \frac{1}{2} \\ \hline \text{OR} & \text{Let } y = (\cos x)^{*}. \text{ Then, } y = e^{z\log_{e}\cos x} \\ & \text{On differentiating both sides with respect to } x, \text{ we get } \ \frac{dy}{dx} = e^{z\log_{e}\cos x} \frac{d}{dx}(x\log_{e}\cos x) & \frac{1}{2} \\ & \Rightarrow \frac{dy}{dx} = (\cos x)^{*} \left\{ \log_{e}\cos x \frac{d}{dx}(x) + x \frac{d}{dx}(\log_{e}\cos x) \right\} & \frac{1}{2} \\ & \Rightarrow \frac{dy}{dx} = (\cos x)^{*} \left\{ \log_{e}\cos x \frac{d}{dx}(x) + x \frac{d}{dx}(\log_{e}\cos x) \right\} & \frac{1}{2} \\ & \Rightarrow \frac{dy}{dx} = (\cos x)^{*} \left\{ \log_{e}\cos x + x. \frac{1}{\cos x}(-\sin x) \right\} \Rightarrow \frac{dy}{dx} = (\cos x)^{*} (\log_{e}\cos x - x\tan x). & 1 \\ \hline 24.(a) & \text{We have } \vec{b} + \lambda \vec{c} = (-1 + 3\lambda) \hat{1} + (2 + \lambda) \hat{1} + \hat{3} = 0 \\ & \lambda = -\frac{5}{a} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 22.    | The marginal cost function is $C'(x) = 0.00039x^2 + 0.004x + 5$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1             |
| $\begin{array}{c} \begin{array}{c} \begin{array}{c} y \ \ \text{then } u \ \text{to } v \ \text{to } v$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1             |
| $\begin{aligned} & \text{and } \frac{dz}{dx} = \frac{1}{x} \\ & \text{and } \frac{dz}{dx} = \frac{1}{x} \\ & \frac{dy}{dz} = \frac{dy}{dz} \\ & \frac{dz}{dx} \\ & \text{So,} \\ & = \frac{1}{\frac{1+x^2}{1}} = \frac{x}{1+x^2} \\ & \frac{1}{2} \end{aligned} \qquad $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23.(a) | $y = \tan^{-1} x$ and $z = \log_e x$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |
| $\begin{vmatrix} \frac{dy}{dz} = \frac{\frac{dy}{dx}}{\frac{dz}{dx}} \\ \text{So,} & \frac{1}{\frac{1+x^2}{\frac{1}{x}}} = \frac{x}{1+x^2}, \\ \frac{1}{\frac{1}{x}} = \frac{1}{\frac{1+x^2}{\frac{1}{x}}} = \frac{x}{1+x^2}, \\ \frac{1}{\frac{1}{2}} & \frac{1}{\frac{1}{2}} \end{vmatrix}$ $Product OR = 1 \text{ Let } y = (\cos x)^x. \text{ Then, } y = e^{x\log_e \cos x} = \frac{1}{\frac{1}{2}} \text{ Cos } x^{-1}  Co $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | Then $\frac{dy}{dx} = \frac{1}{1+x^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{1}{2}$ |
| $\begin{aligned} \frac{1}{24.(a)} &= \frac{1}{1+x^2} = \frac{x}{1+x^2}, \\ \frac{1}{x} &= \frac{1}{1+x^2} = \frac{x}{1+x^2}, \\ \frac{1}{2} &= \frac{1}{x} = \frac{1}{x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\frac{1}{2}$ |
| $\begin{aligned} \frac{1}{24.(a)} &= \frac{1}{1+x^2} = \frac{x}{1+x^2}, \\ \frac{1}{x} &= \frac{1}{1+x^2} = \frac{x}{1+x^2}, \\ \frac{1}{2} &= \frac{1}{x} = \frac{1}{x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | $\frac{dy}{dz} = \frac{\frac{dy}{dx}}{\frac{dz}{dz}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\frac{1}{2}$ |
| OR<br>23.(b)Let $y = (\cos x)^x$ . Then, $y = e^{x \log_e \cos x}$ $\frac{dy}{dx} = e^{x \log_e \cos x} \frac{d}{dx} (x \log_e \cos x)$ $\frac{1}{2}$ On differentiating both sides with respect to $x$ , we get $\frac{dy}{dx} = e^{x \log_e \cos x} \frac{d}{dx} (x \log_e \cos x)$ $\frac{1}{2}$ $\Rightarrow \frac{dy}{dx} = (\cos x)^x \left\{ \log_e \cos x \frac{d}{dx} (x) + x \frac{d}{dx} (\log_e \cos x) \right\}$ $\frac{1}{2}$ $\Rightarrow \frac{dy}{dx} = (\cos x)^x \left\{ \log_e \cos x + x \cdot \frac{1}{\cos x} (-\sin x) \right\} \Rightarrow \frac{dy}{dx} = (\cos x)^x (\log_e \cos x - x \tan x) \cdot 1$ 124.(a)We have $\vec{b} + \lambda \vec{c} = (-1 + 3\lambda)\hat{i} + (2 + \lambda)\hat{j} + \hat{k}$ $\frac{1}{2}$ $(\vec{b} + \lambda \vec{c}) \cdot \vec{a} = 0 \Rightarrow 2(-1 + 3\lambda) + 2(2 + \lambda) + 3 = 0$ 1 $\lambda = -\frac{5}{8}$ $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | So, $\frac{dx}{1+x^2} = \frac{1}{1+x^2} = \frac{x}{1+x^2}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| On differentiating both sides with respect to $x$ , we get $\frac{dy}{dx} = e^{x \log_e \cos x} \frac{d}{dx} (x \log_e \cos x)$<br>$\Rightarrow \frac{dy}{dx} = (\cos x)^x \left\{ \log_e \cos x \frac{d}{dx} (x) + x \frac{d}{dx} (\log_e \cos x) \right\}$ $\Rightarrow \frac{dy}{dx} = (\cos x)^x \left\{ \log_e \cos x + x \cdot \frac{1}{\cos x} (-\sin x) \right\} \Rightarrow \frac{dy}{dx} = (\cos x)^x (\log_e \cos x - x \tan x) \cdot \frac{1}{2}$ $24.(a) \qquad \text{We have } \vec{b} + \lambda \vec{c} = (-1 + 3\lambda)\hat{i} + (2 + \lambda)\hat{j} + \hat{k}$ $(\vec{b} + \lambda \vec{c}) \cdot \vec{a} = 0 \Rightarrow 2(-1 + 3\lambda) + 2(2 + \lambda) + 3 = 0$ $\frac{1}{2}$ $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OR     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |
| $\Rightarrow \frac{dy}{dx} = (\cos x)^{x} \left\{ \log_{e} \cos x \frac{d}{dx}(x) + x \frac{d}{dx}(\log_{e} \cos x) \right\} \qquad $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23.(b) | On differentiating both sides with respect to $x$ , we get $\frac{dy}{dx} = e^{x \log_e \cos x} \frac{d}{dx} (x \log_e \cos x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\frac{1}{2}$ |
| 24.(a) We have $\vec{b} + \lambda \vec{c} = (-1 + 3\lambda)\hat{i} + (2 + \lambda)\hat{j} + \hat{k}$<br>$(\vec{b} + \lambda \vec{c}) \cdot \vec{a} = 0 \implies 2(-1 + 3\lambda) + 2(2 + \lambda) + 3 = 0$<br>$\lambda = -\frac{5}{8}$<br>OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | $\Rightarrow \frac{dy}{dx} = (\cos x)^{x} \left\{ \log_{e} \cos x \frac{d}{dx}(x) + x \frac{d}{dx}(\log_{e} \cos x) \right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |
| $\vec{b} + \lambda \vec{c} \cdot \vec{a} = 0 \implies 2(-1+3\lambda) + 2(2+\lambda) + 3 = 0$ $\frac{1}{2}$ $\lambda = -\frac{5}{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | $\Rightarrow \frac{dy}{dx} = (\cos x)^x \left\{ \log_e \cos x + x \cdot \frac{1}{\cos x} (-\sin x) \right\} \Rightarrow \frac{dy}{dx} = (\cos x)^x (\log_e \cos x - x \tan x) \cdot \frac{1}{\cos x} (-\sin x) = 1 + \frac{1}{\cos x} ($ | 1             |
| $(b + \lambda c) \cdot a = 0 \implies 2(-1 + 3\lambda) + 2(2 + \lambda) + 3 \equiv 0$ $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24.(a) | We have $\vec{b} + \lambda \vec{c} = (-1 + 3\lambda)\hat{i} + (2 + \lambda)\hat{j} + \hat{k}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\frac{1}{2}$ |
| $\Lambda = -\frac{1}{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | $(\vec{b} + \lambda \vec{c}) \cdot \vec{a} = 0 \implies 2(-1 + 3\lambda) + 2(2 + \lambda) + 3 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1             |
| $\begin{array}{ c c c c c }\hline OR\\ 24.(b) & \overrightarrow{BA} = \overrightarrow{OA} - \overrightarrow{OB} = (4\hat{\imath} + 3\hat{k}) - \hat{k} = 4\hat{\imath} + 2\hat{k} & \hline \\ \hline 1\\ 2 & \hline $ |        | $\lambda = -\frac{5}{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{1}{2}$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | $\overrightarrow{BA} = \overrightarrow{OA} - \overrightarrow{OB} = (4\hat{\imath} + 3\hat{k}) - \hat{k} = 4\hat{\imath} + 2\hat{k}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{1}{2}$ |



| <b>28(b)</b>   | Line perpendicular to the lines                                                                                                                                                                               |               |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|                | $\vec{r} = 2\hat{i} + \hat{j} - 3\hat{k} + \lambda(\hat{i} + 2\hat{j} + 5\hat{k})$ and $\vec{r} = 3\hat{i} + 3\hat{j} - 7\hat{k} + \mu(3\hat{i} - 2\hat{j} + 5\hat{k})$ .                                     |               |
|                | has a vector parallel it is given by $\vec{b} = \vec{b_1} \times \vec{b_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 5 \\ 3 & -2 & 5 \end{vmatrix} = 20\hat{i} + 10\hat{j} - 8\hat{k}$         | 1             |
|                | $\therefore \text{ equation of line in vector form is } \vec{r} = -\hat{i} + 2\hat{j} + 7\hat{k} + a(10\hat{i} + 5\hat{j} - 4\hat{k})$                                                                        | 1             |
|                | And equation of line in cartesian form is $\frac{x+1}{10} = \frac{y-2}{5} = \frac{z-7}{-4}$                                                                                                                   | 1             |
| <b>29.</b> (a) | $\int \left\{ \frac{1}{\log_a x} - \frac{1}{(\log_a x)^2} \right\} dx$                                                                                                                                        |               |
|                | $= \int \frac{dx}{\log_e x} - \int \frac{1}{(\log_e x)^2} dx = \frac{1}{\log_e x} \int dx - \int \left\{ \frac{d}{dx} \left( \frac{1}{\log_e x} \right) \int dx \right\} dx - \int \frac{1}{(\log_e x)^2} dx$ | 1             |
|                | $= \frac{x}{\log_e x} + \int \frac{1}{(\log_e x)^2} \frac{1}{x} \cdot x \cdot dx - \int \frac{1}{(\log_e x)^2} dx$                                                                                            | 1             |
|                | $= \frac{x}{\log_e x} + \int \frac{1}{(\log_e x)^2} dx - \int \frac{dx}{(\log_e x)^2} = \frac{x}{\log_e x} + c;$                                                                                              | 1             |
|                | where'c'is any arbitary constant of integration.                                                                                                                                                              |               |
| OR<br>29.(b)   | $\int_{0}^{1} x \left(1-x\right)^{n} dx$                                                                                                                                                                      |               |
|                | $= \int_0^1 (1-x)\{1-(1-x)\}^n dx, \left(as, \int_0^a f(x)dx = \int_0^a f(a-x)dx\right)$                                                                                                                      | 1             |
|                | $=\int_0^1 x^n  (1-x) dx$                                                                                                                                                                                     |               |
|                | $=\int_{-\infty}^{1}x^{n}dx-\int_{-\infty}^{1}x^{n+1}dx$                                                                                                                                                      | $\frac{1}{2}$ |
|                | $= \int_{0}^{1} x^{n} dx - \int_{0}^{1} x^{n+1} dx$ $= \frac{1}{n+1} [x^{n+1}]_{0}^{1} - \frac{1}{n+2} [x^{n+2}]_{0}^{1}$                                                                                     |               |
|                |                                                                                                                                                                                                               | $\frac{1}{2}$ |
|                | $=\frac{1}{n+1} - \frac{1}{n+2} = \frac{1}{(n+1)(n+2)}.$                                                                                                                                                      | 1             |
| 30.            | The feasible region determined by the constraints, $2x + y \ge 3$ , $x + 2y \ge 6$ , $x \ge 0$ , $y \ge 0$ is as shown.                                                                                       |               |
|                |                                                                                                                                                                                                               |               |
|                |                                                                                                                                                                                                               |               |
|                |                                                                                                                                                                                                               |               |
|                |                                                                                                                                                                                                               |               |
|                |                                                                                                                                                                                                               |               |
|                |                                                                                                                                                                                                               |               |
|                |                                                                                                                                                                                                               |               |





$$\Rightarrow k \left( 1 + \frac{1}{5} + \frac{1}{5^2} + \frac{1}{5^3} + \dots \right) = 1$$
  
$$\Rightarrow k \left( \frac{1}{1 - \frac{1}{5}} \right) = 1 \Rightarrow k = \frac{4}{5}$$
  
So,  $P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2)$   
$$= \frac{4}{5} \left( 1 + \frac{1}{5} + \frac{1}{5^2} \right) = \frac{4}{5} \left( \frac{25 + 5 + 1}{25} \right) = \frac{124}{125}.$$
  
1  
Section -D

[This section comprises of solution of long answer type questions (LA) of 5 marks each]

32.  

$$y = 20\cos 2x; \left\{\frac{\pi}{6} \le x \le \frac{\pi}{3}\right\}$$

$$(0,10)$$

$$X'$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(0,10)$$

$$(1,11)$$

$$(1,11)$$

$$(1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,11)$$

$$(1,1,1$$

$$\begin{array}{|c|c|c|c|} \hline 0, \frac{d}{dx} \left( \frac{dy}{dx} \right) \frac{dx}{dx} = \cos e \, e^2 \theta \\ \hline 0, \frac{d^2y}{dx^2} = -\frac{\csc^2 \theta}{c} \\ \hline \frac{d^2y}{dx^2} = \frac{c(1+\cot^2 \theta)^{\frac{3}{2}}}{-\csc^2 \theta} = \frac{-c(\cos e^{-\theta}\theta)^{\frac{3}{2}}}{\csc^{2\theta}\theta} = -C, \\ \hline \frac{1}{2} \\ \hline \frac{d^2y}{dx^2} = -\frac{c(\cos e^{-1}\theta)}{c} \\ \hline \frac{d^2y}{dx^2} = -\frac{c(\cos e^{-1}\theta)^{\frac{3}{2}}}{-\csc^2 \theta} = \frac{-c(\cos e^{-\theta}\theta)^{\frac{3}{2}}}{-\csc^{2\theta}\theta} = -C, \\ \hline \frac{1}{2} \\ \hline \frac{d^2y}{dx^2} = -\frac{c(\cos e^{-1}\theta)^{\frac{3}{2}}}{c} \\ \hline \frac{d^2y}{dx^2} = -\frac{c(\cos e^{-1}\theta)^{\frac{3}{2}}}{-\csc^2 \theta} = -C, \\ \hline \frac{1}{2} \\ \hline \frac{d^2y}{dx^2} = -\frac{c(-1)^2}{c} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \\ \hline \frac{d^2y}{dx^2} = -\frac{\csc^2 \theta}{c} \\ \hline \frac{d^2y}{dx^2} = -\frac{1}{c} \\ \hline \frac{d^2y}{dx^2} = -\frac{1}{c} \\ \hline \frac{d^2y}{dx^2} = -\frac{1}{c} \\ \hline \frac{1}{2} \\ \hline \frac{1}{c} \\ \hline \frac$$

$$\frac{\&(\mu - 7\lambda + 4), 1 + (-2\mu + 6\lambda + 6), (-2) + (\mu - \lambda + 8), 1 = 0}{\Rightarrow 20\mu - 86\lambda = 0 \Rightarrow 10\mu - 43\lambda = 0.86\mu - 20\lambda = 0 \Rightarrow 3\mu - 10\lambda = 0}$$
In solving the above equations, we get  $\mu = \lambda = 0$ 
So, the position vector of the points *P* and *Q* are  $-i - j - k$  and  $3i + 5j + 7k$  respectively.  

$$\frac{PQ}{PQ} = 4i + 6j + 8k$$
 and  

$$\frac{PQ}{PQ} = \sqrt{4^2 + 6^2 + 8^2} = \sqrt{116} = 2\sqrt{29}$$
 units.  
In   
**OR**  
**35.(b)**  

$$\frac{P(1,24)}{A}$$
Let  $P(1, 2, 1)$  be the given point and *L* be the foot of the perpendicular from *P* to the given line *AB*  
(*as shown* in *the figure above*).  
Let's put  $\frac{T-3}{1} = \frac{y+1}{2} = \frac{z-3}{-1} = \lambda$ . Then,  $x = \lambda + 3, y = 2\lambda - 1, z = 3\lambda + 1$   
Let the coordinates of the point *L* be  $(\lambda + 3, 2\lambda - 1, 3\lambda + 1)$ .  
So, direction ratios of *PL* are $(\lambda + 3 - 1, 2\lambda - 1 - 2, 3\lambda + 1 - 1)i.e., (\lambda + 2, 2\lambda - 3, 3\lambda)$   
Direction ratios of the given line are  $1, 2$  and  $3$ , which is perpendicular to *PL*. Therefore, we have,  
 $(\lambda + 2), 1 + (2\lambda - 3), 2 + 3\lambda, 3 = 0 \Rightarrow 14\lambda = 4 \Rightarrow \lambda = \frac{2}{7}$   
Then,  $\lambda + 3 = \frac{2}{7} + 3 = \frac{37}{7}; 2\lambda - 1 = 2(\frac{2}{7}) - 1 = -\frac{3}{7}; 3\lambda + 1 = 3(\frac{2}{7}) + 1 = \frac{13}{7}$   
Therefore, condinates of the point *L* are  $(\frac{23}{7}, -\frac{7}{7}, \frac{12}{7})$ .  
Let  $Q(x_1, y_1, z_1)$  be the image of  $P(1, 2, 1)$  with respect to the given line. Then, *L* is the mid-point of *PQ*.  
Therefore,  $\frac{14x_4}{z} = \frac{23}{7}, \frac{14x_4}{z} = \frac{-3}{7}, \frac{14x_3}{z} = \frac{53}{7}, y_1 = -\frac{20}{7}, \frac{20}{7}, \frac{19}{7}$ ).  
Let quation of the line joining  $P(1, 2, 1)$  and  $Q(\frac{59}{7}, -\frac{20}{7}, \frac{7}{7})$  is

| x-1 $y-2$ $z-1$ $x-1$ $y-2$ $z-1$                                                              | 1 |
|------------------------------------------------------------------------------------------------|---|
| $\frac{32}{7} - \frac{-34}{7} - \frac{12}{12} - \frac{7}{16} - \frac{-17}{-17} - \frac{-6}{6}$ |   |

#### Section –E

[This section comprises solution of 3 case- study/passage based questions of 4 marks each with two sub parts. Solution of the first two case study questions have three sub parts (i),(ii),(iii) of marks 1,1,2 respectively. Solution of the third case study question has two sub parts of 2 marks each.)

| 36. | (i) $V = (40 - 2x)(25 - 2x)xcm^3$                                                                                                                          | 1                           |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
|     | (ii) $\frac{dV}{dx} = 4(3x - 50)(x - 5)$                                                                                                                   | 1                           |
|     | (iii) (a) For extreme values $\frac{dV}{dx} = 4(3x - 50)(x - 5) = 0$                                                                                       | <sup>1</sup> / <sub>2</sub> |
|     | $\Rightarrow x = \frac{50}{3} \text{ or } x = 5$                                                                                                           | <sup>1</sup> / <sub>2</sub> |
|     | $\frac{d^2V}{dx^2} = 24x - 260$                                                                                                                            | <sup>1</sup> / <sub>2</sub> |
|     | $\therefore \frac{d^2 V}{dx^2} \text{ at } x = 5 \text{ is} - 140 < 0$                                                                                     | <sup>1</sup> / <sub>2</sub> |
|     | $\therefore V \text{ is max } when  x = 5$                                                                                                                 |                             |
|     | (iii) <b>OR</b>                                                                                                                                            | 1.                          |
|     | (b) For extreme values $\frac{dV}{dx} = 4(3x^2 - 65x + 250)$                                                                                               | <sup>1</sup> / <sub>2</sub> |
|     | $\frac{d^2 V}{dx^2} = 4(6x - 65)$                                                                                                                          | <sup>1</sup> / <sub>2</sub> |
|     | $\frac{dV}{dx} at x = \frac{65}{6} \text{ exists and } \frac{d^2V}{dx^2} at x = \frac{65}{6} is 0.$                                                        |                             |
|     | $\frac{d^2V}{dx^2}$ at $x = \left(\frac{65}{6}\right)^-$ is negative and $\frac{d^2V}{dx^2}$ at $x = \left(\frac{65}{6}\right)^+$ is positive              | <sup>1</sup> / <sub>2</sub> |
|     | $\therefore x = \frac{65}{6}$ is a point of inflection.                                                                                                    | <sup>1</sup> / <sub>2</sub> |
| 37. | (i) Number of relations is equal to the number of subsets of the set $B \times G = 2^{n(B \times G)}$<br>= $2^{n(B) \times n(G)} = 2^{3 \times 2} = 2^{6}$ | 1                           |
|     | (Wheren(A) denotes the number of the elements in the finite set A)                                                                                         |                             |
|     |                                                                                                                                                            | 1                           |
|     | (iii) (a) (A) reflexive but not symmetric =<br>$\{(b_1, b_2), (b_2, b_1), (b_1, b_1), (b_2, b_2), (b_3, b_3), (b_2, b_3)\}.$                               |                             |
|     | $((v_1, v_2), (v_2, v_1), (v_1, v_1), (v_2, v_2), (v_3, v_3), (v_2, v_3)).$                                                                                |                             |

|     | So the minimum number of elements to be added are                                                                                                                                         |               |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|     | $(b_1, b_1), (b_2, b_2), (b_3, b_3), (b_2, b_3)$                                                                                                                                          | 1             |
|     | {Note : it can be any one of the pair from, $(\boldsymbol{b}_3, \boldsymbol{b}_2)$ , $(\boldsymbol{b}_1, \boldsymbol{b}_3)$ , $(\boldsymbol{b}_3, \boldsymbol{b}_1)$ in place of          |               |
|     | ( <b>b</b> <sub>2</sub> , <b>b</b> <sub>3</sub> ) also}                                                                                                                                   |               |
|     | (B) reflexive and symmetric but not transitive =                                                                                                                                          |               |
|     | $\{(b_1, b_2), (b_2, b_1), (b_1, b_1), (b_2, b_2), (b_3, b_3), (b_2, b_3), (b_3, b_2) \}.$                                                                                                |               |
|     | So the minimum number of elements to be added are                                                                                                                                         | 1             |
|     | $(b_1, b_1), (b_2, b_2), (b_3, b_3), (b_2, b_3), (b_3, b_2)$                                                                                                                              |               |
|     | OR (iii) (b) One-one and onto function                                                                                                                                                    |               |
|     | $x^2 = 4y. \operatorname{let} y = f(x) = \frac{x^2}{4}$                                                                                                                                   |               |
|     |                                                                                                                                                                                           |               |
|     | Let $x_1, x_2 \in [0, 20\sqrt{2}]$ such that $f(x_1) = f(x_2) \Rightarrow \frac{{x_1}^2}{4} = \frac{{x_1}^2}{4}$                                                                          | 1             |
|     | $\Rightarrow x_1^2 = x_2^2 \Rightarrow (x_1 - x_2)(x_1 + x_2) = 0 \Rightarrow x_1 = x_2 \text{ as } x_1, x_2 \in [0, 20\sqrt{2}]$                                                         |               |
|     | f is one-one function<br>Now, $0 \le y \le 200$ hence the value of y is non-negative                                                                                                      |               |
|     | and $f(2\sqrt{y}) = y$                                                                                                                                                                    |               |
|     | $\therefore$ for any arbitrary $y \in [0, 200]$ , the pre-image of y exists in $[0, 20\sqrt{2}]$                                                                                          | 1             |
|     | hence <i>f</i> is onto function.                                                                                                                                                          |               |
| 38. | Let $E_1$ be the event that one parrot and one owl flew from cage $-I$                                                                                                                    |               |
|     | $E_2$ be the event that two parrots flew from Cage-I                                                                                                                                      |               |
|     | A be the event that the owl is still in cage-I                                                                                                                                            |               |
|     | (i) Total ways for A to happen                                                                                                                                                            |               |
|     | From cage I 1 parrot and 1 owl flew and then from Cage-II 1 parrot and 1 owl                                                                                                              |               |
|     | flew back + From cage I 1 parrot and 1 owl flew and then from Cage-II 2 parrots                                                                                                           |               |
|     | flew back + From cage I 2 parrots flew and then from Cage-II 2 parrots came                                                                                                               | 1             |
|     | back.                                                                                                                                                                                     | $\frac{1}{2}$ |
|     | $= (5_{C_1} \times 1_{C_1})(7_{C_1} \times 1_{C_1}) + (5_{C_1} \times 1_{C_1})(7_{C_2}) + (5_{C_2})(8_{C_2})$                                                                             |               |
|     | Probability that the owl is still in cage $-I = P(E_1 \cap A) + P(E_2 \cap A)$                                                                                                            |               |
|     | $\frac{(5_{C_1} \times 1_{C_1})(7_{C_1} \times 1_{C_1}) + (5_{C_2})(8_{C_2})}{(5_{C_1} \times 1_{C_1})(7_{C_1} \times 1_{C_1}) + (5_{C_1} \times 1_{C_1})(7_{C_2}) + (5_{C_2})(8_{C_2})}$ | 1             |
|     |                                                                                                                                                                                           | 1             |
|     | $=\frac{35+280}{35+105+280}=\frac{315}{420}=\frac{3}{4}$                                                                                                                                  | $\frac{1}{2}$ |
|     |                                                                                                                                                                                           |               |

(i) The probability that one parrot and the owl flew from Cage-I to Cage-II given  
that the owl is still in cage-I is 
$$P\left(\frac{E_1}{A}\right)$$
  
 $P\left(\frac{E_1}{A}\right) = \frac{P(E_1 \cap A)}{P(E_1 \cap A) + P(E_2 \cap A)}$  (by Baye's Theorem)  
 $= \frac{\frac{35}{420}}{\frac{315}{420}} = \frac{1}{9}$  1